机器学习非监督之独立分析
独立分析是机器学习非监督分类中十分基础的算法。
算法:
假设X是随机变量,则其元素xi也是随机的。
如果X随机变量是相关的,则元素间也是相关的,X随机相关变量可由独立随机变量S组合成
则随机变量X为
转换矩阵A是满秩的,且。
所以
所以S为:
随机变量si的概率密度函数为,由于随机变量S是独立的,所以S的概率密度函数为
相应的随机变量S的概率分布函数为,其随机变量S概率密度函数与概率分布函数的关系为
随机变量X的概率分布函数为,其随机变量S概率密度函数与概率分布函数的关系为
概率分布函数的意义
我们可以得到极大似然估计为
这里的di是X第i次的观测量。
为了使估计最大,这里是无约束,参数是W,所以我们自然而然想到了求导。这里我们引入了sigmoid函数,令随机变量X的概率分布函数为sigmoid函数,所以概率密度函数为
,所以对W的求导得
求最大这里只能用梯度上升法了,参数更新如下
优缺点:
优点:
缺点
待补充
参考:
https://blog.****.net/lizhe_dashuju/article/details/50263339