【LeetCode】338. Counting Bits
Problem:Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
题目:给定一个非负整数n,计算[0,n]区间每个数二进制中1bit的个数。
要求:时间复杂度优化到O(n),空间复杂度O(n),不使用内建函数。
思路:列出0-16样本情况,当i为2的幂时,1bit为1,,不为幂时,相当于减去最后遇到的为幂的数后的个数加1;
代码:
class Solution {
public int[] countBits(int num) {
int[] ret = new int[num + 1];
if (num == 0)
return ret;
ret[0] = 0;
int flag = 0;
for (int i = 1; i <= num; i++) {
if ((i & (i - 1)) == 0) {
flag = i;
ret[i] = 1;
} else {
ret[i] = ret[i - flag] + 1;
}
}
return ret;
}
}
提交结果:
再看优化最好的solution使用右移,其思路我有想到,但没肯定,当时只想着怎么去除最高位1。。。
代码:
class Solution {
//338. Counting Bits
public int[] countBits(int num) {
int[] ret = new int[num + 1];
for(int i=0;i<=num;i++) {
ret[i]=ret[i>>1]+(i&1);
}
return ret;
}
}