RNN(二) 前向和BPTT

                     

RNN(二) 前向和BPTT

标签(空格分隔): RNN BPTT


basic definition

To simply notation, the RNN here only contains one input layer, one hidden layer and one putput layer. Notations are listed below:

                                                               
neural layer node index number
input layer x(t) i N
previous hidden layer s(t) h M
hidden layer s(t-1) j M
output layer y(t) k O
input->hidden V(t) i,j N->M
previous hidden->hidden U(t) h,j M->M
hidden->output W(t) j,k M->O

Besides, P is the total number of available training samples which are indexed by l

forward

RNN(二) 前向和BPTT
1. input->hidden

net j (t)= i N x i (t)v ji + h M s h (t1)u jh +θ j  netj(t)=∑iNxi(t)vji+∑hMsh(t−1)ujh+θj
  • error for hidden nodes
    RNN(二) 前向和BPTT
    δ lj =( k O Cy lk  y lk net lk  net lk s lj  )s lj net lj  = k O δ lk w kj 
  •                      

    RNN(二) 前向和BPTT

    标签(空格分隔): RNN BPTT


    basic definition

    To simply notation, the RNN here only contains one input layer, one hidden layer and one putput layer. Notations are listed below:

                                                                   
    neural layer node index number
    input layer x(t) i N
    previous hidden layer s(t) h M
    hidden layer s(t-1) j M
    output layer y(t) k O
    input->hidden V(t) i,j N->M
    previous hidden->hidden U(t) h,j M->M
    hidden->output W(t) j,k M->O

    Besides, P is the total number of available training samples which are indexed by l

    forward

    RNN(二) 前向和BPTT
    1. input->hidden

    net j (t)= i N x i (t)v ji + h M s h (t1)u jh +θ j  netj(t)=∑iNxi(t)vji+∑hMsh(t−1)ujh+θj
  • error for hidden nodes
    RNN(二) 前向和BPTT
    δ lj =( k O Cy lk  y lk net lk  net lk s lj  )s lj net lj  = k O δ lk w kj