sklearn字典数据特征抽取
本人git仓库地址 :https://gitee.com/wangxuewaii/MachineLearning
from sklearn.feature_extraction import DictVectorizer
def dictvec():
"""
字典数据抽取
:return:
"""
# 实例化
dict = DictVectorizer(sparse=False) # 默认返回的是sparse的矩阵格式,为了节约内存看的时候不用,关掉
# 调用fit_transform
data = dict.fit_transform([{"city":"北京","temperature":100},{"city":"上海","temperature":50},{"city":"东京","temperature":10}])
print(dict.get_feature_names())
print(data)
if __name__ == "__main__":
dictvec()