Kafka的快速使用
Kafka使用到了zookeeper,所以首先你得安装zookeeper再安装kafka。
1.单节点的broker部署
首先我们需要修改$KAFKA_HOME/config/server.properties这个配置文件,主要以下几处需要修改:
broker.id=0,#每个broker的ID需要唯一
listeners:#监听的端口(此处笔者设置的是默认端口9092)
host.name:#当前机器
log.dirs:#存储日志的文件夹
num.partitions:分区的数量
zookeeper.connect:zookeeper的地址(默认为localhost:2181)
这几处根据你自身需要进行配置,然后启动步骤如下:
1)开启zookeeper,此处需要注意的是zookeeper的conf目录下的zoo.cfg配置文件,主要修改的也是日志存储目录那块。
2)启动Kafka,命令为:kafka-server-start.sh $KAFKA_HOME/config/server.properties
3)创建topic,需要指定zookeeper,命令为:kafka-topics.sh --create --zookeeper hadoop000:2181 --replication-factor 1 --partitions 1 --topic hello_topic。 注意指定zookeeper,后面几个属性可以根据你实际情况进行定义。另外查看所有topic的命令为:
kafka-topics.sh --list --zookeeper hadoop000:2181
4)发送消息,需要指定broker,命令为:kafka-console-producer.sh --broker-list hadoop000:9092 --topic hello_topic
5)消费消息,需要指定zookeeper,命令为:kafka-console-consumer.sh --zookeeper hadoop000:2181 --topic hello_topic --from-beginning。意思就是指定zookeeper上的topic进行消费,from-beginning的设置,可以查看之前的消息。
2.单节点,多broker
主要是增加多个server.properties文件,一个配置文件就相当于一个broker,我就设置三个broker:
server-1.properties
log.dirs=/home/hadoop/app/tmp/kafka-logs-1
listeners=PLAINTEXT://:9093
broker.id=1
server-2.properties
log.dirs=/home/hadoop/app/tmp/kafka-logs-2
listeners=PLAINTEXT://:9094
broker.id=2
server-3.properties
log.dirs=/home/hadoop/app/tmp/kafka-logs-3
listeners=PLAINTEXT://:9095
broker.id=3
然后依次开启,命令如下:
kafka-server-start.sh -daemon $KAFKA_HOME/config/server-1.properties &
kafka-server-start.sh -daemon $KAFKA_HOME/config/server-2.properties &
kafka-server-start.sh -daemon $KAFKA_HOME/config/server-3.properties &
接下来就跟上面的步骤一样:
kafka-topics.sh --create --zookeeper hadoop000:2181 --replication-factor 3 --partitions 1 --topic my-replicated-topic
kafka-console-producer.sh --broker-list hadoop000:9093,hadoop000:9094,hadoop000:9095 --topic my-replicated-topic
kafka-console-consumer.sh --zookeeper hadoop000:2181 --topic my-replicated-topic
查看 topic的详细信息:
kafka-topics.sh --describe --zookeeper hadoop000:2181 --topic my-replicated-topic
要注意的是,副本中会有个leader,而多副本也实现了kafka的容错性,挂掉一个副本后,会自动在剩下副本里选出一个leader来同步操作。
根据上面步骤操作,我们在producer窗口输入,在consumer消费窗口看到相应输出。
Producer和Consumer API的使用
接下来展示一个简单的Demo,在生产端简单创建个线程进行循环输出,然后用消费者端对输出的内容进行展示,也就是消费。
配置文件
/**
* Kafka常用配置文件
*/
public class KafkaProperties {
public static final String ZK = "192.168.199.111:2181";
public static final String TOPIC = "hello_topic";
public static final String BROKER_LIST = "192.168.199.111:9092";
public static final String GROUP_ID = "test_group1";
}
Producer API DEMO
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import java.util.Properties;
/**
* Kafka生产者
*/
public class KafkaProducer extends Thread{
private String topic;
private Producer<Integer, String> producer;
public KafkaProducer(String topic) {
this.topic = topic;
Properties properties = new Properties();
properties.put("metadata.broker.list",KafkaProperties.BROKER_LIST);
properties.put("serializer.class","kafka.serializer.StringEncoder");
properties.put("request.required.acks","1");
producer = new Producer<Integer, String>(new ProducerConfig(properties));
}
@Override
public void run() {
int messageNo = 1;
while(true) {
String message = "message_" + messageNo;
producer.send(new KeyedMessage<Integer, String>(topic, message));
System.out.println("Sent: " + message);
messageNo ++ ;
try{
Thread.sleep(2000);
} catch (Exception e){
e.printStackTrace();
}
}
}
}
Consumer API DEMO
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
/**
* Kafka消费者
*/
public class KafkaConsumer extends Thread{
private String topic;
public KafkaConsumer(String topic) {
this.topic = topic;
}
private ConsumerConnector createConnector(){
Properties properties = new Properties();
properties.put("zookeeper.connect", KafkaProperties.ZK);
properties.put("group.id",KafkaProperties.GROUP_ID);
return Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
}
@Override
public void run() {
ConsumerConnector consumer = createConnector();
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, 1);
// topicCountMap.put(topic2, 1);
// topicCountMap.put(topic3, 1);
// String: topic
// List<KafkaStream<byte[], byte[]>> 对应的数据流
Map<String, List<KafkaStream<byte[], byte[]>>> messageStream = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = messageStream.get(topic).get(0); //获取我们每次接收到的暑假
ConsumerIterator<byte[], byte[]> iterator = stream.iterator();
while (iterator.hasNext()) {
String message = new String(iterator.next().message());
System.out.println("rec: " + message);
}
}
}
最后在main函数对这两个类调用即可,结果如下:
**** 原文:https://blog.****.net/wing_93/article/details/78513782