Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(arXiv:1704.04861v1)

Motivation

提出来用在手机或者边缘视觉应用上的轻量化模型,可以有效的做精度和延迟之间的trade off。

Architecture

  • Depthwise Separable Convolution

    使用DC和PC代替标准卷积

Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

input :DF×DF×MD_F ×D_F × M

output:DF×DF×ND_F × D_F × N

kernel K of size:DK×DK×M×ND_K × D_K × M × N

  • standard convolution cost

    DKDKMNDFDFD_K · D_K · M · N · D_F · D_F

  • Depthwise convolution cost

    DKDKMDFDFDK · DK · M · DF · DF

  • Depthwise Separable Convolution = Depthwise convolution + Pointwise convolution

    DKDKMDFDF+MNDFDFDK · DK · M · DF · DF +M · N · DF · DF

最终计算量减少的比例
Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

  • Network Structure and Training

    Depthwise Separable Convolution模块的构建方法:
    Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
    各个子模块计算量的百分比:
    Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

  • Width Multiplier: Thinner Models Although

    width multiplier α, the number of input channels M becomes αM and the number of output channels N becomes αN,使用随机采样输入的通道实现?α\alpha是属于[0-1]的。

    计算量减为:

    DKDKαMDFDF+αMαNDFDFDK · DK · αM · DF · DF + αM · αN · DF · DF

  • Resolution Multiplier: Reduced Representation

    将网络输入的分辨率使用缩放因子pp改小,resize?

    计算量减为:

    $DK ·DK · αM· ρDF · ρDF +αM· αN · ρDF · ρDF $
    Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Experiments

  • classification

Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

  • detection

Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications