有限元法求变分问题示例

v[y]=01(12(y2+y))dxv[y]=\int_{0}^{1}\left(\frac{1}{2}( y^{\prime 2}+y)\right) d x \quad 取极值
y(0)=0,y(1)=1y(0)=0, y(1)=1
第一步:区域剖分
将 自变量x的取值区域[0,1],以步长h,剖分为n份,等分点x0=0,x1,x2,...,xn=1x_0=0,x_1,x_2,...,x_n=1,其中xix11=h=1nx_{i}-x_{1-1}=h=\frac{1}{n}, 如下图所示,令n=4, 则h=14h=\frac{1}{4}
其中,y0=y(x0)=0,y4=y(x4)=1y_0=y(x_0)=0, y_4=y(x_4)=1, y1,y2,y3y_1,y_2,y_3为待求的未知量。
第二步,选择插值函数(插值函数有很多种定义方式,具体参见数值分析等相关教材)
插值函数及其导数:
yi(x)=yiyi1h(xxi1)+yi1y_{i}(x)=\frac{y_{i}-y_{i-1}}{h}\left(x-x_{i-1}\right)+y_{i-1}
yi(x)=yiyi1hy_{i}^{\prime}(x)=\frac{y_{i}-y_{i-1}}{h}
第三步,单元分析
将整个的积分v[y]=01(12y2+y)dxv[y]=\int_{0}^{1}\left(\frac{1}{2} y^{\prime 2}+y\right) d x \quad 分解为各个单元的积分
vi(y)=xi1xi12(y2+y)dx=xi1xi12{[yi(x)]2+yi(x)}dxv_{i}(y)=\int_{x_{i-1}}^{x_i} \frac{1}{2}\left(y^{\prime2}+y\right) d x=\int_{x_{i-1}}^{x_i} \frac{1}{2}\left\{\left[y_{i}{\prime}(x)\right]^{2}+y_{i}(x)\right\} d x
将插值函数代入,并求积分可得:
vi(y)=12h(yiyi1)2+h2(yi+yi1)v_{i}(y)=\frac{1}{2 h}\left(y_{i}-y_{i-1}\right)^{2}+\frac{h}{2}\left(y_{i}+y_{i-1}\right)
将此表示为vi(y)=vi(yi,yi1)v_{i}(y)=v_{i}\left(y_{i}, y_{i-1}\right)
具体的4个单元积分为:
v1(y)=12h(y1y0)2+h2(y1+y0)v_{1}(y)=\frac{1}{2 h}\left(y_{1}-y_{0}\right)^{2}+\frac{h}{2}\left(y_{1}+y_{0}\right)
v2(y)=12h(y2y1)2+h2(y2+y1)v_{2}(y)=\frac{1}{2 h}\left(y_{2}-y_{1}\right)^{2}+\frac{h}{2}\left(y_{2}+y_{1}\right)
v3(y)=12h(y3y2)2+h2(y3+y2)v_{3}(y)=\frac{1}{2 h}\left(y_{3}-y_{2}\right)^{2}+\frac{h}{2}\left(y_{3}+y_{2}\right)
v4(y)=12h(y4y3)2+h2(y4+y3)v_{4}(y)=\frac{1}{2 h}\left(y_{4}-y_{3}\right)^{2}+\frac{h}{2}\left(y_{4}+y_{3}\right)
第四步:总体合成
将各个单元积分合并成为总体:
v[y]=01(12y2+y)dx=i=1nvi(y)=i=1nvi(yi,yi1)v[y]=\int_{0}^{1}\left(\frac{1}{2} y^{\prime2}+y\right) d x=\sum_{i=1}^{n} v_{i}(y)=\sum_{i=1}^{n} v_{i}\left(y_{i}, y_{i-1}\right)
第五步:求偏导,泛函v[y]v[y]取极值,相当于多元函数v(y1,y2,...,yn1)v(y_1,y_2,...,y_{n-1})取极值。
v(y1,y2,,yn1)yi=0(i=1,2,,n1)\frac{\partial v\left(y_{1}, y_{2}, \cdots, y_{n-1}\right)}{\partial y_{i}}=0 \quad(i=1,2, \cdots, n-1)
具体展开为:
vy1=v1y1+v2y1=4(0+2y1y2)+14=0\frac{\partial v}{\partial y_1}= \frac{\partial v_1}{\partial y_1} + \frac{\partial v_2}{\partial y_1} = 4\left(0+2 y_{1}-y_{2}\right)+\frac{1}{4}=0
vy2=v2y2+v3y2=4(y1+2y2y3)+14=0\frac{\partial v}{\partial y_2}= \frac{\partial v_2}{\partial y_2} + \frac{\partial v_3}{\partial y_2} = 4\left(-y_{1}+2 y_{2}-y_{3}\right)+\frac{1}{4}=0
vy3=v3y3+v4y3=4(y2+2y31)+14=0\frac{\partial v}{\partial y_3}= \frac{\partial v_3}{\partial y_3} + \frac{\partial v_4}{\partial y_3} = 4\left(-y_{2}+2 y_{3}-1\right)+\frac{1}{4}=0
对上述方程组整理后,可得:
[210121012][y1y2y3]=[1161161516]\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{r}-\frac{1}{16} \\ -\frac{1}{16} \\ \frac{15}{16}\end{array}\right]

解线性方程组,得到最终结果为:
y1=0.15625,y2=0.375,y3=0.65625y_1=0.15625,y_2=0.375,y_3=0.65625

有限元法求变分问题示例
有限元法求变分问题示例
有限元法求变分问题示例
有限元法求变分问题示例
有限元法求变分问题示例

摘自:地球物理中的有限元法–徐世浙