【JVM】垃圾收集器详解
垃圾收集器是内存回收的具体实现。Java虚拟机规范中对垃圾收集器应该如何实现并没有任何规定,因此不同的厂商、不同版本的虚拟机所提供的垃圾收集器都可能会有很大差别,并且一般都会提供参数供用户根据自己的应用特点和要求组合出各个年代所使用的收集器。
这里讨论HotSpot虚拟机,包含的所有收集器如图:
图中展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。
1、Serial收集器
Serial收集器是最基本、发展历史最悠久的收集器。这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作, 更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。
到现在为止,它依然是虚拟机运行在Client模式下的默认新生代收集器。它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程比),对于限定单个 CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最 高的单线程收集效率。在用户的桌面应用场景中,分配给虚拟机管理的内存一般来说不会很大,收集几十兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本上不会再大了),停顿时间完全可以控制在几十毫秒最多一百多毫秒以内,只要不是频繁发生,这点停顿是可以接受的。
2、ParNew收集器
ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。
ParNew收集器除了多线程收集之外,其他与Serial收集器相比并没有太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关但很重要的原因是,除了Serial收集器外,目前只有它能与CMS收集器配合工作。
ParNew收集器也是使用-XX:+UseConcMarkSweepGC选项后的默认新生代收集器,也可以使用-XX:+UseParNewGC选项来强制指定它。 ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。当然,随着可以使用的CPU的数量的增加,它对于GC时系统资源 的有效利用还是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多的环境下,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。
P.S. 注意区分
● 并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
● 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。
3、Parallel Scavenge收集器
Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器。
看上去和ParNew都一样,Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点 是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到 一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间)
停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高 吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不 需要太多交互的任务。
Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。
4、Serial Old收集器
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整 理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式 下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge 收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。
5、Parallel Old收集器
Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。
由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,由于单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合“给力”。
直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old 收集器。
6、CMS收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前Java应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。
从名字(包含“Mark Sweep”)上就可以看出,CMS收集器是基于“标记—清除”算法实现 的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:
- 初始标记(CMS initial mark)
- 并发标记(CMS concurrent mark)
- 重新标记(CMS remark)
- 并发清除(CMS concurrent sweep)
其中,初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是 标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC RootsTracing 的过程,而重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。
由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。
7、G1收集器
G1收集器的特点:
- 并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU(CPU或者 CPU核心)来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的 GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。
- 分代收集:与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其 他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已 经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。
- 空间整合:与CMS的“标记—清理”算法不同,G1从整体来看是基于“标记—整理”算法实 现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这 两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种 特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一 次GC。
- 可预测的停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关 注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一 个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实 时Java(RTSJ)的垃圾收集器的特征了。
使用G1收集器时,Java堆的内存布局就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。
G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java 堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的 空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时 间,优先回收价值最大的Region(这也就是Garbage-First名称的来由)。这种使用Region划分 内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内可以获取尽可能高 的收集效率。
G1收集器的运作大致可划分为以下几个步骤:
- 初始标记(Initial Marking)
- 并发标记(Concurrent Marking)
- 最终标记(Final Marking)
- 筛选回收(Live Data Counting and Evacuation)
初始标记阶段仅仅只是标记一下GC Roots能直接关联到的对象,并且修改 TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的 Region中创建新对象,这阶段需要停顿线程,但耗时很短。并发标记阶段是从GC Root开始 对堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行。而最终标记阶段则是为了修正在并发标记期间因用户程序继续运作而导致标记产生变动 的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remembered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。最后在筛选回收阶段首先对各个Region的回收价值和成本进行排序, 根据用户所期望的GC停顿时间来制定回收计划。