scipy_作业

Exercise1

代码:

import numpy  as np

from scipy import linalg

 

n = 10

m = 5

A = np.random.randint(0, 10, (m,n)).reshape(m,n)

b =np.random.randint(0,10,(m,1)).reshape(m,1)

print("A:")

print(A)

print("B:")

print(b)

x,res,rnk,s = linalg.lstsq(A,b)

print("X:")

print(x)

 

 

b_ = linalg.norm(b-A.dot(x))

print("^b:")

print(b_)

结果截图:

 scipy_作业

Exercise2

代码:

import numpy  as np

from scipy import linalg

from scipy import optimize

def f(x):

 return np.square(np.sin((x-2)*np.exp(0-np.power(x,2))))

m = optimize.minimize_scalar(f)

print(m.fun)

结果截图:

scipy_作业

Exercise3

import numpy as np

from scipy import linalg

from scipy.spatial import distance

 

n = 5

X = np.random.randint(0,100,(n,2))

d = distance.cdist(X,X,metric ='euclidean')

print(' ',end = '')

for i in range(1,n+1):

       print("%10d"%i,end= '')

print('\n ',end = '')

for i in range(1,n+1):

      print("%7d"%X[i-1,0]+',%-2d'%X[i-1,1],end= '')

print('\n ',end = '')

for i in range(1,n+1):

       print('%10d'%i,end= '')

print()

for i in range(1,n+1):

       if(i!=0):

              print(str(i),end= '')

       else:

              print('',end = '')

       forj in range(1,n+1):

              if(j==0):

                     print("%10d"%j,end= '')

              else:

                     print("%10.2f"%d[i-1,j-1],end= '')

       print()

结果截图:

scipy_作业