scipy_作业
Exercise1
代码:
import numpy as np
from scipy import linalg
n = 10
m = 5
A = np.random.randint(0, 10, (m,n)).reshape(m,n)
b =np.random.randint(0,10,(m,1)).reshape(m,1)
print("A:")
print(A)
print("B:")
print(b)
x,res,rnk,s = linalg.lstsq(A,b)
print("X:")
print(x)
b_ = linalg.norm(b-A.dot(x))
print("^b:")
print(b_)
结果截图:
Exercise2
代码:
import numpy as np
from scipy import linalg
from scipy import optimize
def f(x):
return np.square(np.sin((x-2)*np.exp(0-np.power(x,2))))
m = optimize.minimize_scalar(f)
print(m.fun)
结果截图:
Exercise3
import numpy as np
from scipy import linalg
from scipy.spatial import distance
n = 5
X = np.random.randint(0,100,(n,2))
d = distance.cdist(X,X,metric ='euclidean')
print(' ',end = '')
for i in range(1,n+1):
print("%10d"%i,end= '')
print('\n ',end = '')
for i in range(1,n+1):
print("%7d"%X[i-1,0]+',%-2d'%X[i-1,1],end= '')
print('\n ',end = '')
for i in range(1,n+1):
print('%10d'%i,end= '')
print()
for i in range(1,n+1):
if(i!=0):
print(str(i),end= '')
else:
print('',end = '')
forj in range(1,n+1):
if(j==0):
print("%10d"%j,end= '')
else:
print("%10.2f"%d[i-1,j-1],end= '')
print()
结果截图: