python迭代器、生成器、装饰器
1.迭代器
迭代是Python最强大的功能之一,是访问集合元素的一种方式。
迭代器是一个可以记住遍历的位置的对象。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
迭代器作用:节约内存,取的时候在生成数据。
迭代器有两个基本的方法:iter() 和 next()。
字符串,列表或元组对象都可用于创建迭代器:
>>>list=[1,2,3,4]
>>> it = iter(list) # 创建迭代器对象
>>> print (next(it)) # 输出迭代器的下一个元素
1
>>> print (next(it))
2
>>>
迭代器对象可以使用常规for语句进行遍历:
#!/usr/bin/python3
list=[1,2,3,4]
it = iter(list) # 创建迭代器对象
for x in it:
print (x, end=" ")
执行以上程序,输出结果如下:
1 2 3 4
也可以使用 next() 函数:
#!/usr/bin/python3
import sys # 引入 sys 模块
list=[1,2,3,4]
it = iter(list) # 创建迭代器对象
while True:
try:
print (next(it))
except StopIteration:
sys.exit()
执行以上程序,输出结果如下:
1
2
3
4
创建一个迭代器
把一个类作为一个迭代器使用需要在类中实现两个方法 :iter() 与 next() 。
iter() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 next() 方法并通过 StopIteration 异常标识迭代的完成。
next() 方法会返回下一个迭代器对象。
创建一个返回数字的迭代器,初始值为 1,逐步递增 1:
class MyNumbers:
def __iter__(self):
self.a = 1
return self
def __next__(self):
x = self.a
self.a += 1
return x
myclass = MyNumbers()
myiter = iter(myclass)
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
执行输出结果为:
1
2
3
4
5
StopIteration
StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 next() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。
在 20 次迭代后停止执行:
class MyNumbers:
def __iter__(self):
self.a = 1
return self
def __next__(self):
if self.a <= 20:
x = self.a
self.a += 1
return x
else:
raise StopIteration
myclass = MyNumbers()
myiter = iter(myclass)
for x in myiter:
print(x)
执行输出结果为:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2.生成器
在 Python 中,使用了 yield 的函数被称为生成器(generator)。
生成器的本质就是迭代器,是一种更优雅的迭代器。
生成器函数:
send()
yield from
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
调用一个生成器函数,返回的是一个迭代器对象。
以下实例使用 yield 实现斐波那契数列:
#!/usr/bin/python3
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
执行以上程序,输出结果如下:
0 1 1 2 3 5 8 13 21 34 55
闭包
3.装饰器
装饰器就是一种特殊的闭包。
装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。
它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。
概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。
@符号是装饰器的语法糖,在定义函数的时候使用,避免再一次赋值操作
3.1被装饰函数无参数
3.2被装饰函数有参数
3.3被装饰函数有参数有返回值
3.4万能装饰器
def w1(func):
def inner(*args,**kwargs):
# 验证过程
return func(*args,**kwargs)
return inner
@w1
def f1(*args,**kwargs):
print('f1')
return '万能装饰器'
一个装饰器装饰多个函数,那么每个函数被调用时都会执行装饰器的代码。
多个装饰器装饰一个函数:执行顺序是从被装饰函数起,从下到上执行。
装饰器总结:
1 装饰器函数中的inner参数以及inner内部调用的fun函数均要与被装饰的函数在形式上保持一致(参数个数,顺序等)即:被修饰函数 t1()、inner()、fun()三者括号中的内容要保持一致。
2 一个装饰器可以装饰多个函数,多个装饰器可以装饰一个函数。
3 多个装饰器同时装饰一个函数的时候,执行顺序是这样的:按与被装饰的函数的距离,由近到远执行。