DStream操作之Window Operations(开窗函数)

什么是DStream

Discretized Stream是Spark Streaming的基础抽象,代表持续性的数据流和经过各种Spark算子操作后的结果数据流。在内部实现上,DStream是一系列连续的RDD来表示。每个RDD含有一段时间间隔内的数据,如下图:
DStream操作之Window Operations(开窗函数)
对数据的操作也是按照RDD为单位来进行的DStream操作之Window Operations(开窗函数) Spark Streaming使用数据源产生的数据流创建DStream,也可以在 已有的DStream上使用一些操作来创建新的DStream。
它的工作流程像下面的图所示一样,接受到实时数据后,给数据分批次,然后传给Spark Engine处理最后生成该批次的结果。

DStream相关操作

DStream上的操作与RDD的类似,分为Transformations(转换)和Output Operations(输出)两种,此外转换操作中还有一些比较特殊的操作,如:updateStateByKey()、transform()以及各种Window相关的操作。

Transformations on DStreams

DStream操作之Window Operations(开窗函数)
DStream操作之Window Operations(开窗函数)特殊的Transformations

(1)UpdateStateByKey Operation
UpdateStateByKey用于记录历史记录,保存上次的状态

(2)Window Operations(开窗函数)
滑动窗口转换操作:
滑动窗口转换操作的计算过程如下图所示,我们可以事先设定一个滑动窗口的长度(也就是窗口的持续时间),并且设定滑动窗口的时间间隔(每隔多长时间执行一次计算),然后,就可以让窗口按照指定时间间隔在源DStream上滑动,每次窗口停放的位置上,都会有一部分DStream被框入窗口内,形成一个小段的DStream,这时,就可以启动对这个小段DStream的计算。
DStream操作之Window Operations(开窗函数)(1)红色的矩形就是一个窗口,窗口框住的是一段时间内的数据流。
(2)这里面每一个time都是时间单元,在官方的例子中,每隔window size是3 time unit, 而且每隔2个单位时间,窗口会slide一次。
所以基于窗口的操作,需要指定2个参数:

• slide interval - The interval at which the window-based operation is performed (2 in the figure).
a.窗口大小,一段时间内数据的容器。
b.滑动间隔,每隔多久计算一次。
DStream操作之Window Operations(开窗函数)

Output Operations on DStreams

Output Operations可以将DStream的数据输出到外部的数据库或文件系统,当某个Output Operations被调用时(与RDD的Action相同),spark streaming程序才会开始真正的计算过程。
DStream操作之Window Operations(开窗函数)
DStream操作之Window Operations(开窗函数)