Zookeeper集群部署及相关介绍
Zookeeper
1 Zookeeper 集群部署
1.1 Zookeeper工作机制
1、Zookeeper集群角色
Zookeeper集群的角色: Leader 和 follower (Observer)
zk集群最好配成奇数个节点
只要集群中有半数以上节点存活,集群就能提供服务
1.2 Zookeeper部署
1.2.1 机器准备
1/ 安装到3台虚拟机上
2/ 安装好JDK
3/ 上传安装包。上传用工具。
4/ 解压
su - hadoop(切换到hadoop用户)
tar -zxvf zookeeper-3.4.5.tar.gz(解压)
5/ 重命名
mv zookeeper-3.4.5 zookeeper(重命名文件夹zookeeper-3.4.5为zookeeper)
可以删除里面一些源码工程相关的文件,剩下的是这些:
1.2.2修改环境变量
(注意:3台zookeeper都需要修改)
1/ su – root(切换用户到root)
2/ vi /etc/profile(修改文件)
3/ 添加内容:
export ZOOKEEPER_HOME=/home/hadoop/zookeeper
export PATH=$PATH:$ZOOKEEPER_HOME/bin
4/ 加载环境配置:
source /etc/profile
5/ 修改完成后切换回hadoop用户:
su - hadoop
1.2.3 修改Zookeeper配置文件
1、用root用户操作
cd zookeeper/conf
cp zoo_sample.cfg zoo.cfg
2、vi zoo.cfg
3、添加内容:
dataDir=/root/apps/zookeeper/zkdata
dataLogDir=/home/hadoop/zookeeper/log
server.1=mini1:2888:3888 ## (心跳端口、选举端口)
server.2=mini2:2888:3888
server.3=mini3:2888:3888
4、创建文件夹:
cd /home/hadoop/zookeeper/
mkdir zkdata
mkdir -m 755 log
5、在data文件夹下新建myid文件,myid的文件内容为:
cd zkdata
echo 1 > myid
1.2.4 分发安装包到其他机器
scp -r /root/apps [email protected]:/root/
scp -r /root/apps [email protected]:/root/
1.2.5 修改其他机器的配置文件
1、修改myid文件
到mini2上:修改myid为:2
到mini3上:修改myid为:3
1.2.6 启动(每台机器)
注:
1、事先将三台服务器的防火墙都关掉
2、全网统一hosts映射
先配好一台上的hosts
然后:
scp /etc/hosts mini2:/etc
scp /etc/hosts mini3:/etc
3、然后一台一台地启动
bin/zkServer.sh start
或者编写一个脚本来批量启动所有机器:
for host in "mini1 mini2 mini3"
do
ssh $host "source/etc/profile;/root/apps/zookeeper/bin/zkServer.sh start"
1.2.7 查看集群状态
1、jps(查看进程)
2、zkServer.sh status(查看集群状态,主从信息)
2 分布式系统中协调服务的必要性
在线感知
1/所有服务节点,上线时,先去zookeeper上注册一个子节点
2/“服务请求者”,监听父节点
3/当有新的服务节点加入,或者有旧的服务节点掉线, “服务请求者”就能收到通知,就可以去zookeeper上查看最新的在线服务器列表
主从协调
配置管理
名称服务
分布式锁
3 Zookeeper简介
3.1 概念介绍
Zookeeper是一个分布式协调服务;就是为用户的分布式应用程序提供协调服务
1、zookeeper是为别的分布式程序服务的
2、Zookeeper本身就是一个分布式程序(只要有半数以上节点存活,zk就能正常服务)
3、Zookeeper所提供的服务涵盖:主从协调、服务器节点动态上下线、统一配置管理、分布式共享锁、统一名称服务……
4、虽然说可以提供各种服务,但是zookeeper在底层其实只提供了两个功能:
a、管理(存储,读取)用户程序提交的数据;
b、并为用户程序提供数据节点监听服务;
4 Zookeeper核心工作机制
4.1 zookeeper特性
1、Zookeeper:一个leader,多个follower组成的集群
2、全局数据一致:每个server保存一份相同的数据副本,client无论连接到哪个server,数据都是一致的
3、分布式读写,更新请求转发,由leader实施
4、更新请求顺序进行,来自同一个client的更新请求按其发送顺序依次执行
5、数据更新原子性,一次数据更新要么成功(半数以上节点成功),要么失败
6、实时性,在一定时间范围内,client能读到最新数据
4.2 zookeeper数据结构
4.2.1 概况
1、层次化的目录结构,命名符合常规文件系统规范(见下图)
2、每个节点在zookeeper中叫做znode,并且其有一个唯一的路径标识
3、节点Znode可以包含数据(只能存储很小量的数据,<1M;最好是1k字节以内)和子节点(但是EPHEMERAL类型的节点不能有子节点,下一页详细讲解)
4、客户端应用可以在节点上设置监视器(后续详细讲解)
4.2.2 节点类型
1、Znode有两种类型:
短暂(ephemeral)(断开连接自己删除)
持久(persistent)(断开连接不删除)
2、Znode有四种形式的目录节点(默认是persistent )
PERSISTENT
PERSISTENT_SEQUENTIAL(持久序列/test0000000019 )
EPHEMERAL
EPHEMERAL_SEQUENTIAL
3、创建znode时设置顺序标识,znode名称后会附加一个值,顺序号是一个单调递增的计数器,由父节点维护
4、在分布式系统中,顺序号可以被用于为所有的事件进行全局排序,这样客户端可以通过顺序号推断事件的顺序
5 Zookeeper命令行操作
5.1 客户端连接
运行 zkCli.sh –server <ip>进入命令行工具
5.2 查看znode路径
ls /mygirls
5.3 获取znode数据
get /mygirls
5.4 监听znode事件
ls /mygirls watch ## 就对一个节点的子节点变化事件注册了监听
get /mygirls watch ## 就对一个节点的数据内容变化事件注册了监听
注意: 监听器只生效一次
监听器的工作机制,其实是在客户端会专门创建一个监听线程,在本机的一个端口上等待zk集群发送过来事件
6 Zookeeper 客户端API
6.1 基本使用
org.apache.zookeeper.Zookeeper是客户端入口主类,负责建立与server的会话
它提供以下几类主要方法 :
功能 |
描述 |
create |
在本地目录树中创建一个节点 |
delete |
删除一个节点 |
exists |
测试本地是否存在目标节点 |
get/set data |
从目标节点上读取 / 写数据 |
get/set ACL |
获取 / 设置目标节点访问控制列表信息 |
get children |
检索一个子节点上的列表 |
sync |
等待要被传送的数据 |
表 1 : ZooKeeper API 描述
6.2 增删改查znode数据
public class SimpleDemo { // 会话超时时间,设置为与系统默认时间一致 private static final int SESSION_TIMEOUT = 30000; // 创建 ZooKeeper 实例 ZooKeeper zk; // 创建 Watcher 实例 Watcher wh = new Watcher() { public void process(org.apache.zookeeper.WatchedEvent event) { System.out.println(event.toString()); } }; // 初始化 ZooKeeper 实例 private void createZKInstance() throws IOException { zk = new ZooKeeper("weekend01:2181", SimpleDemo.SESSION_TIMEOUT, this.wh); } private void ZKOperations() throws IOException, InterruptedException, KeeperException { System.out.println("/n1. 创建 ZooKeeper 节点 (znode : zoo2, 数据: myData2 ,权限: OPEN_ACL_UNSAFE ,节点类型: Persistent"); zk.create("/zoo2", "myData2".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); System.out.println("/n2. 查看是否创建成功: "); System.out.println(new String(zk.getData("/zoo2", false, null))); System.out.println("/n3. 修改节点数据 "); zk.setData("/zoo2", "shenlan211314".getBytes(), -1); System.out.println("/n4. 查看是否修改成功: "); System.out.println(new String(zk.getData("/zoo2", false, null))); System.out.println("/n5. 删除节点 "); zk.delete("/zoo2", -1); System.out.println("/n6. 查看节点是否被删除: "); System.out.println(" 节点状态: [" + zk.exists("/zoo2", false) + "]"); } private void ZKClose() throws InterruptedException { zk.close(); } public static void main(String[] args) throws IOException, InterruptedException, KeeperException { SimpleDemo dm = new SimpleDemo(); dm.createZKInstance(); dm.ZKOperations(); dm.ZKClose(); } } |
6.3 监听znode
Zookeeper的监听器工作机制
监听器是一个接口,我们的代码中可以实现Wather这个接口,实现其中的process方法,方法中即我们自己的业务逻辑
监听器的注册是在获取数据的操作中实现:
getData(path,watch?)监听的事件是:节点数据变化事件
getChildren(path,watch?)监听的事件是:节点下的子节点增减变化事件
7 原理补充
Zookeeper虽然在配置文件中并没有指定master和slave
但是,zookeeper工作时,是有一个节点为leader,其他则为follower
Leader是通过内部的选举机制临时产生的
7.1 zookeeper的选举机制(zk的数据一致性核心算法paxos)
以一个简单的例子来说明整个选举的过程.
假设有五台服务器组成的zookeeper集群,它们的id从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的.假设这些服务器依序启动,来看看会发生什么.
1) 服务器1启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举状态一直是LOOKING状态
2) 服务器2启动,它与最开始启动的服务器1进行通信,互相交换自己的选举结果,由于两者都没有历史数据,所以id值较大的服务器2胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是3),所以服务器1,2还是继续保持LOOKING状态.
3) 服务器3启动,根据前面的理论分析,服务器3成为服务器1,2,3中的老大,而与上面不同的是,此时有三台服务器选举了它,所以它成为了这次选举的leader.
4) 服务器4启动,根据前面的分析,理论上服务器4应该是服务器1,2,3,4中最大的,但是由于前面已经有半数以上的服务器选举了服务器3,所以它只能接收当小弟的命了.
5) 服务器5启动,同4一样,当小弟.
7.2 非全新集群的选举机制(数据恢复)
那么,初始化的时候,是按照上述的说明进行选举的,但是当zookeeper运行了一段时间之后,有机器down掉,重新选举时,选举过程就相对复杂了。
需要加入数据version、leader id和逻辑时钟。
数据version:数据新的version就大,数据每次更新都会更新version。
Leader id:就是我们配置的myid中的值,每个机器一个。
逻辑时钟:这个值从0开始递增,每次选举对应一个值,也就是说: 如果在同一次选举中,那么这个值应该是一致的 ; 逻辑时钟值越大,说明这一次选举leader的进程更新.
选举的标准就变成:
1、逻辑时钟小的选举结果被忽略,重新投票
2、统一逻辑时钟后,数据id大的胜出
3、数据id相同的情况下,leader id大的胜出
根据这个规则选出leader。
8 Zookeeper 应用案例
8.1 案例1——服务器上下线动态感知
8.1.1 需求描述
某分布式系统中,主节点可以有多台,可以动态上下线
任意一台客户端都能实时感知到主节点服务器的上下线
8.1.2 设计思路
8.1.3 代码开发
1、客户端实现
public class AppClient { private String groupNode = "sgroup"; private ZooKeeper zk; private Stat stat = new Stat(); private volatile List<String> serverList;
/** * 连接zookeeper */ public void connectZookeeper() throws Exception { zk = new ZooKeeper("localhost:4180,localhost:4181,localhost:4182", 5000, new Watcher() { public void process(WatchedEvent event) { // 如果发生了"/sgroup"节点下的子节点变化事件, 更新server列表, 并重新注册监听 if (event.getType() == EventType.NodeChildrenChanged && ("/" + groupNode).equals(event.getPath())) { try { updateServerList(); } catch (Exception e) { e.printStackTrace(); } } } });
updateServerList(); }
/** * 更新server列表 */ private void updateServerList() throws Exception { List<String> newServerList = new ArrayList<String>();
// 获取并监听groupNode的子节点变化 // watch参数为true, 表示监听子节点变化事件. // 每次都需要重新注册监听, 因为一次注册, 只能监听一次事件, 如果还想继续保持监听, 必须重新注册 List<String> subList = zk.getChildren("/" + groupNode, true); for (String subNode : subList) { // 获取每个子节点下关联的server地址 byte[] data = zk.getData("/" + groupNode + "/" + subNode, false, stat); newServerList.add(new String(data, "utf-8")); }
// 替换server列表 serverList = newServerList;
System.out.println("server list updated: " + serverList); }
/** * client的工作逻辑写在这个方法中 * 此处不做任何处理, 只让client sleep */ public void handle() throws InterruptedException { Thread.sleep(Long.MAX_VALUE); }
public static void main(String[] args) throws Exception { AppClient ac = new AppClient(); ac.connectZookeeper();
ac.handle(); } } |
2、服务器端实现
public class AppServer { private String groupNode = "sgroup"; private String subNode = "sub";
/** * 连接zookeeper * @param address server的地址 */ public void connectZookeeper(String address) throws Exception { ZooKeeper zk = new ZooKeeper( "localhost:4180,localhost:4181,localhost:4182", 5000, new Watcher() { public void process(WatchedEvent event) { // 不做处理 } }); // 在"/sgroup"下创建子节点 // 子节点的类型设置为EPHEMERAL_SEQUENTIAL, 表明这是一个临时节点, 且在子节点的名称后面加上一串数字后缀 // 将server的地址数据关联到新创建的子节点上 String createdPath = zk.create("/" + groupNode + "/" + subNode, address.getBytes("utf-8"), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); System.out.println("create: " + createdPath); }
/** * server的工作逻辑写在这个方法中 * 此处不做任何处理, 只让server sleep */ public void handle() throws InterruptedException { Thread.sleep(Long.MAX_VALUE); }
public static void main(String[] args) throws Exception { // 在参数中指定server的地址 if (args.length == 0) { System.err.println("The first argument must be server address"); System.exit(1); }
AppServer as = new AppServer(); as.connectZookeeper(args[0]); as.handle(); } } |
8.2 案例2——分布式共享锁
1、需求描述
在我们自己的分布式业务系统中,可能会存在某种资源,需要被整个系统的各台服务器共享访问,但是只允许一台服务器同时访问
2、设计思路
3、代码开发
public class DistributedClientMy { // 超时时间 private static final int SESSION_TIMEOUT = 5000; // zookeeper server列表 private String hosts = "spark01:2181,spark02:2181,spark03:2181"; private String groupNode = "locks"; private String subNode = "sub"; private boolean haveLock = false;
private ZooKeeper zk; // 当前client创建的子节点 private volatile String thisPath;
/** * 连接zookeeper */ public void connectZookeeper() throws Exception { zk = new ZooKeeper("spark01:2181", SESSION_TIMEOUT, new Watcher() { public void process(WatchedEvent event) { try {
// 子节点发生变化 if (event.getType() == EventType.NodeChildrenChanged && event.getPath().equals("/" + groupNode)) { // thisPath是否是列表中的最小节点 List<String> childrenNodes = zk.getChildren("/" + groupNode, true); String thisNode = thisPath.substring(("/" + groupNode + "/").length()); // 排序 Collections.sort(childrenNodes); if (childrenNodes.indexOf(thisNode) == 0) { doSomething(); thisPath = zk.create("/" + groupNode + "/" + subNode, null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); } } } catch (Exception e) { e.printStackTrace(); } } });
// 创建子节点 thisPath = zk.create("/" + groupNode + "/" + subNode, null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
// wait一小会, 让结果更清晰一些 Thread.sleep(new Random().nextInt(1000));
// 监听子节点的变化 List<String> childrenNodes = zk.getChildren("/" + groupNode, true);
// 列表中只有一个子节点, 那肯定就是thisPath, 说明client获得锁 if (childrenNodes.size() == 1) { doSomething(); thisPath = zk.create("/" + groupNode + "/" + subNode, null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); } }
/** * 共享资源的访问逻辑写在这个方法中 */ private void doSomething() throws Exception { try { System.out.println("gain lock: " + thisPath); Thread.sleep(2000); // do something } finally { System.out.println("finished: " + thisPath); // 将thisPath删除, 监听thisPath的client将获得通知 // 相当于释放锁 zk.delete(this.thisPath, -1); } }
public static void main(String[] args) throws Exception { DistributedClientMy dl = new DistributedClientMy(); dl.connectZookeeper(); Thread.sleep(Long.MAX_VALUE); }
} |