Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein

Artery/Vein Classification

 

论文链接

 

1.  期刊

  • MICCAI 2019

 

2.  亮点

  • 使用illumination correction (IC)和vessel enhancement (VE)增强数据,并和原始数据一起作为网络的输入
  • 在网络输出端,利用multi-task思想将输出分为两个分支,其中一个分割血管,另外一个分割动静脉
  • 在multi-task任务中,提出Spatial Activation map来增强潜在的微血管和血管边缘的的识别能力
  • 利用Deep Supervision的思想增强low-level的特征(梯度消失,low-level 和high-level features的gap问题)

 

3. 方法

Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein

         Deep Supervision

Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein

4. 结果

Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein

 5. 消融

Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein

         可以从表一中看出,在利用multi-task (MTs)和Multi-input (MIs)之后,效果均很明显。 

         从图2(E)中可以看出 Spatial Activation map(AC)的确可以捕捉到微血管和血管边缘的信息。主要得益于其将p=0.5的预测点增强到了Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein,而p = 0或者p = 1的地方还是1(即血管和背景区域概率为1),通过这个方法来矫正动静脉的分类。

 

6. 总结

  •   该方法在DRIVE动静脉均取得了state-of-art, 主要得益于图像扩增,和合理的结构设计
  •   该方法边缘增强和微血管增强很是巧妙
  •   该方法基于patch训练和测试,一张图8s时间成本太大,无法做到实时
  •   该方法模型过于复杂