7.3 多元回归分析(multiple regression)
1. 与简单线性回归区别(simple linear regression)
多个自变量(x)
2. 多元回归模型
y=β0+β1x1+β2x2+ ... +βpxp+ε
其中:β0,β1,β2... βp是参数
ε是误差值
3. 多元回归方程
E(y)=β0+β1x1+β2x2+ ... +βpxp
4. 估计多元回归方程:
y_hat=b0+b1x1+b2x2+ ... +bpxp
一个样本被用来计算β0,β1,β2... βp的点估计b0, b1, b2,..., bp
5. 估计流程 (与简单线性回归类似)
6. 估计方法
使sum of squares最小
运算与简单线性回归类似,涉及到线性代数和矩阵代数的运算
7. 例子
一家快递公司送货:X1: 运输里程 X2: 运输次数 Y:总运输时间
Driving Assignment |
X1=Miles Traveled |
X2=Number of Deliveries |
Y= Travel Time (Hours) |
1 |
100 |
4 |
9.3 |
2 |
50 |
3 |
4.8 |
3 |
100 |
4 |
8.9 |
4 |
100 |
2 |
6.5 |
5 |
50 |
2 |
4.2 |
6 |
80 |
2 |
6.2 |
7 |
75 |
3 |
7.4 |
8 |
65 |
4 |
6.0 |
9 |
90 |
3 |
7.6 |
10 |
90 |
2 |
6.1 |
Time = b0+ b1*Miles + b2 * Deliveries
Time = -0.869 + 0.0611 Miles + 0.923 Deliveries
8. 描述参数含义
b0: 平均每多运送一英里,运输时间延长0.0611 小时
b1: 平均每多一次运输,运输时间延长 0.923 小时
9. 预测
如果一个运输任务是跑102英里,运输6次,预计多少小时?
Time = -0.869 +0.0611 *102+ 0.923 * 6
= 10.9 (小时)
10. 如果自变量中有分类型变量(categorical data) , 如何处理?
英里数 |
次数 |
车型 |
时间 |
100 |
4 |
1 |
9.3 |
50 |
3 |
0 |
4.8 |
100 |
4 |
1 |
8.9 |
100 |
2 |
2 |
6.5 |
50 |
2 |
2 |
4.2 |
80 |
2 |
1 |
6.2 |
75 |
3 |
1 |
7.4 |
65 |
4 |
0 |
6 |
90 |
3 |
0 |
7.6 |
11. 关于误差的分布
误差ε是一个随机变量,均值为0
ε的方差对于所有的自变量来说相等
所有ε的值是独立的
ε满足正态分布,并且通过β0+β1x1+β2x2+ ... +βpxp反映y的期望值