tensorflow c++ API
问题描述:
解决方法:参考http://blog.sina.com.cn/s/blog_5d5a19fe0102yvfc.html
logging.h报错 ”error C2589: “(”: “::”右边的非法标记“问题,需要:
项目属性 ——> C/C++ ——> 预处理器 ——> 预处理器定义 (此处添加预定义编译开关 NOMINMAX)
结果如下:
源代码如下:
/*
* test tensorflow_cc c++ successfully
* load mnist.pb model successfully
* 2019.6.28
* wang dan
* conference:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/label_image
* */
#include <fstream>
#include <utility>
#include <vector>
#include <Eigen/Core>
#include <Eigen/Dense>#include "tensorflow/cc/ops/const_op.h"
#include "tensorflow/cc/ops/image_ops.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/graph/default_device.h"
#include "tensorflow/core/graph/graph_def_builder.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/util/command_line_flags.h"using namespace std;
using namespace tensorflow;
using namespace tensorflow::ops;
using tensorflow::Flag;
using tensorflow::Tensor;
using tensorflow::Status;
using tensorflow::string;
using tensorflow::int32;static Status ReadEntireFile(tensorflow::Env* env, const string& filename,
Tensor* output) {
tensorflow::uint64 file_size = 0;
TF_RETURN_IF_ERROR(env->GetFileSize(filename, &file_size));string contents;
contents.resize(file_size);std::unique_ptr<tensorflow::RandomAccessFile> file;
TF_RETURN_IF_ERROR(env->NewRandomAccessFile(filename, &file));tensorflow::StringPiece data;
TF_RETURN_IF_ERROR(file->Read(0, file_size, &data, &(contents)[0]));
if (data.size() != file_size) {
return tensorflow::errors::DataLoss("Truncated read of '", filename,
"' expected ", file_size, " got ",
data.size());
}
// output->scalar<string>()() = data.ToString();
output->scalar<string>()() = string(data);
return Status::OK();
}Status ReadTensorFromImageFile(const string& file_name, const int input_height,
const int input_width, const float input_mean,
const float input_std,
std::vector<Tensor>* out_tensors) {
auto root = tensorflow::Scope::NewRootScope();
using namespace ::tensorflow::ops;string input_name = "file_reader";
string output_name = "normalized";// read file_name into a tensor named input
Tensor input(tensorflow::DT_STRING, tensorflow::TensorShape());
TF_RETURN_IF_ERROR(
ReadEntireFile(tensorflow::Env::Default(), file_name, &input));// use a placeholder to read input data
auto file_reader =
Placeholder(root.WithOpName("input"), tensorflow::DataType::DT_STRING);std::vector<std::pair<string, tensorflow::Tensor>> inputs = {
{ "input", input },
};// Now try to figure out what kind of file it is and decode it.
const int wanted_channels = 1;
// tensorflow::Output image_reader;
// if (tensorflow::StringPiece(file_name).ends_with(".png")) {
// image_reader = DecodePng(root.WithOpName("png_reader"), file_reader,
// DecodePng::Channels(wanted_channels));
// } else if (tensorflow::StringPiece(file_name).ends_with(".gif")) {
// // gif decoder returns 4-D tensor, remove the first dim
// image_reader =
// Squeeze(root.WithOpName("squeeze_first_dim"),
// DecodeGif(root.WithOpName("gif_reader"), file_reader));
// } else if (tensorflow::StringPiece(file_name).ends_with(".bmp")) {
// image_reader = DecodeBmp(root.WithOpName("bmp_reader"), file_reader);
// } else {
// // Assume if it's neither a PNG nor a GIF then it must be a JPEG.
// image_reader = DecodeJpeg(root.WithOpName("jpeg_reader"), file_reader,
// DecodeJpeg::Channels(wanted_channels));
// }
tensorflow::Output image_reader;
if (tensorflow::str_util::EndsWith(file_name, ".png")) {
image_reader = DecodePng(root.WithOpName("png_reader"), file_reader,
DecodePng::Channels(wanted_channels));
}
else if (tensorflow::str_util::EndsWith(file_name, ".gif")) {
// gif decoder returns 4-D tensor, remove the first dim
image_reader =
Squeeze(root.WithOpName("squeeze_first_dim"),
DecodeGif(root.WithOpName("gif_reader"), file_reader));
}
else if (tensorflow::str_util::EndsWith(file_name, ".bmp")) {
image_reader = DecodeBmp(root.WithOpName("bmp_reader"), file_reader);
}
else {
// Assume if it's neither a PNG nor a GIF then it must be a JPEG.
image_reader = DecodeJpeg(root.WithOpName("jpeg_reader"), file_reader,
DecodeJpeg::Channels(wanted_channels));
}
// Now cast the image data to float so we can do normal math on it.
auto float_caster =
Cast(root.WithOpName("float_caster"), image_reader, tensorflow::DT_FLOAT);auto dims_expander = ExpandDims(root.WithOpName("expand"), float_caster, 0);
float input_max = 255;
Div(root.WithOpName("div"), dims_expander, input_max);tensorflow::GraphDef graph;
TF_RETURN_IF_ERROR(root.ToGraphDef(&graph));std::unique_ptr<tensorflow::Session> session(
tensorflow::NewSession(tensorflow::SessionOptions()));
TF_RETURN_IF_ERROR(session->Create(graph));
// std::vector<Tensor> out_tensors;
// TF_RETURN_IF_ERROR(session->Run({}, {output_name + ":0", output_name + ":1"},
// {}, &out_tensors));
TF_RETURN_IF_ERROR(session->Run({ inputs }, { "div" }, {}, out_tensors));
return Status::OK();
}
int main()
{
Session* session;
Status status = NewSession(SessionOptions(), &session);//创建新会话Sessionstring model_path = "../frozen_inference_graph.pb";
GraphDef graphdef; //Graph Definition for current modelStatus status_load = ReadBinaryProto(Env::Default(), model_path, &graphdef); //从pb文件中读取图模型;
if (!status_load.ok()) {
std::cout << "ERROR: Loading model failed..." << model_path << std::endl;
std::cout << status_load.ToString() << "\n";
return -1;
}
Status status_create = session->Create(graphdef); //将模型导入会话Session中;
if (!status_create.ok()) {
std::cout << "ERROR: Creating graph in session failed..." << status_create.ToString() << std::endl;
return -1;
}
cout << "Session successfully created." << endl;
string image_path = "../image1.jpg";
int input_height = 28;
int input_width = 28;
int input_mean = 0;
int input_std = 1;
std::vector<Tensor> resized_tensors;
Status read_tensor_status =
ReadTensorFromImageFile(image_path, input_height, input_width, input_mean,
input_std, &resized_tensors);
if (!read_tensor_status.ok()) {
LOG(ERROR) << read_tensor_status;
cout << "resing error" << endl;
return -1;
}const Tensor& resized_tensor = resized_tensors[0];
std::cout << resized_tensor.DebugString() << endl;vector<tensorflow::Tensor> outputs;
string output_node = "softmax";
Status status_run = session->Run({ { "inputs", resized_tensor } }, { output_node }, {}, &outputs);if (!status_run.ok()) {
std::cout << "ERROR: RUN failed..." << std::endl;
std::cout << status_run.ToString() << "\n";
return -1;
}
//Fetch output value
std::cout << "Output tensor size:" << outputs.size() << std::endl;
for (std::size_t i = 0; i < outputs.size(); i++) {
std::cout << outputs[i].DebugString() << endl;
}Tensor t = outputs[0]; // Fetch the first tensor
int ndim2 = t.shape().dims(); // Get the dimension of the tensor
auto tmap = t.tensor<float, 2>(); // Tensor Shape: [batch_size, target_class_num]
int output_dim = t.shape().dim_size(1); // Get the target_class_num from 1st dimension
std::vector<double> tout;// Argmax: Get Final Prediction Label and Probability
int output_class_id = -1;
double output_prob = 0.0;
for (int j = 0; j < output_dim; j++)
{
std::cout << "Class " << j << " prob:" << tmap(0, j) << "," << std::endl;
if (tmap(0, j) >= output_prob) {
output_class_id = j;
output_prob = tmap(0, j);
}
}std::cout << "Final class id: " << output_class_id << std::endl;
std::cout << "Final class prob: " << output_prob << std::endl;return 0;
}
输出为下,具体有何错误,或者如何识别目标……接下来继续奋斗吧