吴恩达深度学习第一课第三周课后作业

Planar data classification with one hidden layer

建立只有一个隐藏层的神经网络

主程序如下:

# coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

np.random.seed(1) # set a seed so that the results are consistent

X, Y = load_planar_dataset()

shape_X = X.shape
shape_Y = Y.shape

m = shape_X[1]  # training set size

print ('The shape of X is: ' + str(shape_X))    #每个样本为2维,即输入层为2个单元,总共有400个样本
print ('The shape of Y is: ' + str(shape_Y))    #总共有400个标签,400个样本
print ('I have m = %d training examples!' % (m))


# 定义每个层的单元数
def layer_sizes(X, Y):

    n_x = X.shape[0]  # size of input layer
    n_h = 4           #hide_layer神经元的个数
    n_y = Y.shape[0]  # size of output layer
    return (n_x, n_h, n_y)

X_assess, Y_assess = layer_sizes_test_case()  #从testcases中导入输入层、输出层单元数
(n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess)
print("The size of the input layer is: n_x = " + str(n_x))  #输入层为5
print("The size of the hidden layer is: n_h = " + str(n_h)) # 隐藏层为4
print("The size of the output layer is: n_y = " + str(n_y))  #输出层为2


#初始化权重
#神经网络中权重不能初始化为0,针对逻辑回归,可为0
def initialize_parameters(n_x, n_h, n_y):
    np.random.seed(2)  # we set up a seed so that your output matches ours although the initialization is random.
    W1 = np.random.randn(n_h, n_x) * 0.01
    b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y, n_h) * 0.01
    b2 = np.zeros((n_y, 1))

    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters

n_x, n_h, n_y = initialize_parameters_test_case()  #从testcase中导入输入、中间、输出层的单元数

parameters = initialize_parameters(n_x, n_h, n_y)
print("W1 = " + str(parameters["W1"]))   #4,2
print("b1 = " + str(parameters["b1"]))   #4,1
print("W2 = " + str(parameters["W2"]))   #1,4
print("b2 = " + str(parameters["b2"]))   #1,1


def forward_propagation(X, parameters):

    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    Z1 = np.dot(W1, X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = sigmoid(Z2)

    assert (A2.shape == (1, X.shape[1]))

    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}

    return A2, cache   #A2为最终的输出,cache为每一层的缓存,即每层的z值,**值



X_assess, parameters = forward_propagation_test_case()   #从testcase中给定权值以及输出值
A2, cache = forward_propagation(X_assess, parameters)
print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))


def compute_cost(A2, Y, parameters):

    m = Y.shape[1]  # number of example
    logprobs = Y * np.log(A2) + (1 - Y) * np.log(1 - A2)    #A2为输出值
    cost = -1./ m * np.sum(logprobs)     #一定要注意,此处为-1.  浮点数  否则为计算出错

    cost = np.squeeze(cost)  # makes sure cost is the dimension we expect.
    assert (isinstance(cost, float))      #isinstance(object, classinfo)  判断cost的数据类型  返回True or false

    return cost

A2, Y_assess, parameters = compute_cost_test_case()

print("cost = " + str(compute_cost(A2, Y_assess, parameters)))



def backward_propagation(parameters, cache, X, Y):

    m = X.shape[1]   #数据的个数

    W1 = parameters["W1"]
    W2 = parameters["W2"]

    A1 = cache["A1"]
    A2 = cache["A2"]

    dZ2 = A2 - Y
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1./ m * np.sum(dZ2, axis=1, keepdims=True)     #此处的1要全部改为1.  浮点数运算
    dZ1 = np.dot(W2.T, dZ2) * (1. - np.power(A1, 2))     #np.power  计算A1的平方  此处用的**函数为tanh(z),导数为1-a1的平方
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}

    return grads

parameters, cache, X_assess, Y_assess = backward_propagation_test_case()

grads = backward_propagation(parameters, cache, X_assess, Y_assess)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("db2 = "+ str(grads["db2"]))


def update_parameters(parameters, grads, learning_rate=1.2):

    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]

    dW1 = grads["dW1"]
    db1 = grads["db1"]
    dW2 = grads["dW2"]
    db2 = grads["db2"]

    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters

parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))


def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False):

    np.random.seed(3)
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]

    # 初始化权重, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]


    # Loop (gradient descent)

    for i in range(0, num_iterations):

        # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
        A2, cache = forward_propagation(X, parameters)   #A2为前向传播的最终输出,cache为每一层的z值和**值

        # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
        cost = compute_cost(A2, Y, parameters)

        # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
        grads = backward_propagation(parameters, cache, X, Y)   #梯度,为每一层的dw  dz

        # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
        parameters = update_parameters(parameters, grads)   #对每一层的权重进行更新

        # Print the cost every 1000 iterations
        if print_cost and i % 1000 == 0:
            print ("Cost after iteration %i: %f" % (i, cost))

    return parameters

X_assess, Y_assess = nn_model_test_case()

parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))


def predict(parameters, X):

    # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
    A2, cache = forward_propagation(X, parameters)

    predictions = np.round(A2)

    return predictions

parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)

其中还包括一下两部分程序

主要用来实现**函数,初始化权重等

1.testCases

import numpy as np


def layer_sizes_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(5, 3)
    Y_assess = np.random.randn(2, 3)
    return X_assess, Y_assess


def initialize_parameters_test_case():
    n_x, n_h, n_y = 2, 4, 1
    return n_x, n_h, n_y


def forward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)

    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
                                  [-0.02136196, 0.01640271],
                                  [-0.01793436, -0.00841747],
                                  [0.00502881, -0.01245288]]),
                  'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
                  'b1': np.array([[0.],
                                  [0.],
                                  [0.],
                                  [0.]]),
                  'b2': np.array([[0.]])}

    return X_assess, parameters


def compute_cost_test_case():
    np.random.seed(1)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
                                  [-0.02136196, 0.01640271],
                                  [-0.01793436, -0.00841747],
                                  [0.00502881, -0.01245288]]),
                  'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
                  'b1': np.array([[0.],
                                  [0.],
                                  [0.],
                                  [0.]]),
                  'b2': np.array([[0.]])}

    a2 = (np.array([[0.5002307, 0.49985831, 0.50023963]]))

    return a2, Y_assess, parameters


def backward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
                                  [-0.02136196, 0.01640271],
                                  [-0.01793436, -0.00841747],
                                  [0.00502881, -0.01245288]]),
                  'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
                  'b1': np.array([[0.],
                                  [0.],
                                  [0.],
                                  [0.]]),
                  'b2': np.array([[0.]])}

    cache = {'A1': np.array([[-0.00616578, 0.0020626, 0.00349619],
                             [-0.05225116, 0.02725659, -0.02646251],
                             [-0.02009721, 0.0036869, 0.02883756],
                             [0.02152675, -0.01385234, 0.02599885]]),
             'A2': np.array([[0.5002307, 0.49985831, 0.50023963]]),
             'Z1': np.array([[-0.00616586, 0.0020626, 0.0034962],
                             [-0.05229879, 0.02726335, -0.02646869],
                             [-0.02009991, 0.00368692, 0.02884556],
                             [0.02153007, -0.01385322, 0.02600471]]),
             'Z2': np.array([[0.00092281, -0.00056678, 0.00095853]])}
    return parameters, cache, X_assess, Y_assess


def update_parameters_test_case():
    parameters = {'W1': np.array([[-0.00615039, 0.0169021],
                                  [-0.02311792, 0.03137121],
                                  [-0.0169217, -0.01752545],
                                  [0.00935436, -0.05018221]]),
                  'W2': np.array([[-0.0104319, -0.04019007, 0.01607211, 0.04440255]]),
                  'b1': np.array([[-8.97523455e-07],
                                  [8.15562092e-06],
                                  [6.04810633e-07],
                                  [-2.54560700e-06]]),
                  'b2': np.array([[9.14954378e-05]])}

    grads = {'dW1': np.array([[0.00023322, -0.00205423],
                              [0.00082222, -0.00700776],
                              [-0.00031831, 0.0028636],
                              [-0.00092857, 0.00809933]]),
             'dW2': np.array([[-1.75740039e-05, 3.70231337e-03, -1.25683095e-03,
                               -2.55715317e-03]]),
             'db1': np.array([[1.05570087e-07],
                              [-3.81814487e-06],
                              [-1.90155145e-07],
                              [5.46467802e-07]]),
             'db2': np.array([[-1.08923140e-05]])}
    return parameters, grads


def nn_model_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    Y_assess = np.random.randn(1, 3)
    return X_assess, Y_assess


def predict_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    parameters = {'W1': np.array([[-0.00615039, 0.0169021],
                                  [-0.02311792, 0.03137121],
                                  [-0.0169217, -0.01752545],
                                  [0.00935436, -0.05018221]]),
                  'W2': np.array([[-0.0104319, -0.04019007, 0.01607211, 0.04440255]]),
                  'b1': np.array([[-8.97523455e-07],
                                  [8.15562092e-06],
                                  [6.04810633e-07],
                                  [-2.54560700e-06]]),
                  'b2': np.array([[9.14954378e-05]])}
    return parameters, X_assess

 

2.planar_utils

import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model


def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)


def sigmoid(x):
    """
    Compute the sigmoid of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(x)
    """
    s = 1 / (1 + np.exp(-x))
    return s


def load_planar_dataset():
    np.random.seed(1)
    m = 400  # number of examples
    N = int(m / 2)  # number of points per class
    D = 2  # dimensionality
    X = np.zeros((m, D))  # data matrix where each row is a single example
    Y = np.zeros((m, 1), dtype='uint8')  # labels vector (0 for red, 1 for blue)
    a = 4  # maximum ray of the flower

    for j in range(2):
        ix = range(N * j, N * (j + 1))
        t = np.linspace(j * 3.12, (j + 1) * 3.12, N) + np.random.randn(N) * 0.2  # theta
        r = a * np.sin(4 * t) + np.random.randn(N) * 0.2  # radius
        X[ix] = np.c_[r * np.sin(t), r * np.cos(t)]
        Y[ix] = j

    X = X.T
    Y = Y.T

    return X, Y


def load_extra_datasets():
    N = 200
    noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
    noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
    blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
    gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2,
                                                                  n_classes=2, shuffle=True, random_state=None)
    no_structure = np.random.rand(N, 2), np.random.rand(N, 2)

    return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

下图为反向传播时,每一层dw、db的计算方式,依照以下的方式依次计算每一层的权重即可

 

吴恩达深度学习第一课第三周课后作业

 

主要流程为:

1.定义输入层、隐藏层、输出层的神经元个数

2.根据不同的层数、初始化权重(不能为0)

3.实现前向传播

4.计算loss

5.反向传播

6.更新权重

7.定义总的模型函数

8.做出预测