2016.CVPR.基于多输出顺序回归的年龄识别
参考:https://blog.****.net/qq_14845119/article/details/79460315
源自2016 cvpr,Ordinal Regression with Multiple Output CNN for Age Estimation
文章主要2个贡献:
(1)将传统的年龄回归问题转化为多个顺序2分类问题
文章网络的整体结构如下图所示:
在经过3个卷积模块后,接入一个全连接层,然后输出K-1个通道的2分类任务。
例如这里,Task1预测年龄是否大于1,Task2预测年龄是否大于2,Task3预测年龄是否大于3,Task(k-1)预测年龄是否大于k-1。预测结果为{0,1},满足为1,不满足为0。
最后的预测年龄为将所有的预测结果求和再加1,得到最终的预测年龄。
整体上给人一种多个2分类的SVM组合为一个N分类的分类器的思想。想法还是挺novel,具体效果有待实验验证。
(1)提出了亚洲人脸数据集,Asian Face Age Dataset (AFAD)
该数据集主要从人人网收集。包含了164432 的人脸图片,并且带有准确的年龄标签。其中,100752 为男性,63680为女性,年龄范围为15-40。
各阶段男女比例的分布如下面曲线图所示:
References: