【统计学】【2001.05】离散时间序列中的模式定位
本文为美国南佛罗里达大学(作者:KEVIN B. PRATT)的硕士论文,共83页。
我们描述了一种快速压缩时间序列的技术,对得到的压缩序列进行索引,并检索与给定模式相似的序列。压缩算法识别时间序列中的“重要”点并丢弃其他点。该算法在线性时间内运行,需要恒定的内存,并且对各种各样的时间序列都有很好的结果。我们不仅将重要点用于压缩,还用于索引时间序列数据库,支持对模式的有效搜索,并允许用户在搜索速度和准确性之间进行权衡。实验证明了所开发的技术在股票价格、气象数据和心电图识别模式的有效性。
We describe a technique for fast compression of time-series, indexing of the resulting compressed series, and retrieval of series similar to a given pattern. The compression algorithm identifies “important” points of a time-series and discards the other points. It runs in linear time, takes constant memory, and gives good results for a wide variety of time-series. We use the important points not only for compression, but also for indexing a database of time-series, which supports efficient search for patterns and allows the user to control the trade-off between the speed and accuracy of search. The experiments show the effectiveness of the developed technique for identifying patterns in stock prices, meteorological data, and electrocardiograms.
- 引言
- 前期工作
- 重要点
- 相似性测量
- 模式检索
- 结论
更多精彩文章请关注公众号: