NLP TASK10 bert

学习任务

Transformer的原理

BERT的原理

利用预训练的BERT模型将句子转换为句向量,进行文本分类1

学习笔记

Transformer原理

Transformer原理:Attention Is All You Need:https://arxiv.org/abs/1706.03762

Transformer是一种完全基于Attention机制来加速深度学习训练过程的算法模型。Transformer最大的优势在于其在并行化处理上做出的贡献。

Transformer抛弃了以往深度学习任务里面使用到的 CNN 和 RNN ,目前大热的Bert就是基于Transformer构建的,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。

Transformer原理图:
NLP TASK10 bert

bert原理

BERT模型的全称是Bidirectional Encoder Representations from Transformers,它是一种新型的语言模型。之所以说是一种新型的语言模型,是因为它通过联合调节所有层中的双向Transformer来训练预训练深度双向表示。

想深入了解BERT模型,首先应该理解语言模型。预训练的语言模型对于众多自然语言处理问题起到了重要作用,比如SQuAD问答任务、命名实体识别以及情感识别。目前将预训练的语言模型应用到NLP任务主要有两种策略,一种是基于特征的语言模型,如ELMo模型;另一种是基于微调的语言模型,如OpenAI GPT。这两类语言模型各有其优缺点,而BERT的出现,似乎融合了它们所有的优点,因此才可以在诸多后续特定任务上取得最优的效果。

BERT 的创新点在于它将双向 Transformer 用于语言模型,
之前的模型是从左向右输入一个文本序列,或者将 left-to-right 和 right-to-left 的训练结合起来。
实验的结果表明,双向训练的语言模型对语境的理解会比单向的语言模型更深刻,
论文中介绍了一种新技术叫做 Masked LM(MLM),在这个技术出现之前是无法进行双向语言模型训练的。
BERT 利用了 Transformer 的 encoder 部分。
Transformer 是一种注意力机制,可以学习文本中单词之间的上下文关系的。
Transformer 的原型包括两个独立的机制,一个 encoder 负责接收文本作为输入,一个 decoder 负责预测任务的结果。
BERT 的目标是生成语言模型,所以只需要 encoder 机制。
Transformer 的 encoder 是一次性读取整个文本序列,而不是从左到右或从右到左地按顺序读取,
这个特征使得模型能够基于单词的两侧学习,相当于是一个双向的功能。
下图是 Transformer 的 encoder 部分,输入是一个 token 序列,先对其进行 embedding 称为向量,然后输入给神经网络,输出是大小为 H 的向量序列,每个向量对应着具有相同索引的 token。

NLP TASK10 bert
当我们在训练语言模型时,有一个挑战就是要定义一个预测目标,很多模型在一个序列中预测下一个单词,
“The child came home from ___”
双向的方法在这样的任务中是有限制的,为了克服这个问题,BERT 使用两个策略:

Masked LM (MLM)

在将单词序列输入给 BERT 之前,每个序列中有 15% 的单词被 [MASK] token 替换。 然后模型尝试基于序列中其他未被 mask 的单词的上下文来预测被掩盖的原单词。
这样就需要:

在 encoder 的输出上添加一个分类层
用嵌入矩阵乘以输出向量,将其转换为词汇的维度
用 softmax 计算词汇表中每个单词的概率

BERT 的损失函数只考虑了 mask 的预测值,忽略了没有掩蔽的字的预测。这样的话,模型要比单向模型收敛得慢,不过结果的情境意识增加了。
NLP TASK10 bert

Next Sentence Prediction (NSP)

在 BERT 的训练过程中,模型接收成对的句子作为输入,并且预测其中第二个句子是否在原始文档中也是后续句子。
在训练期间,50% 的输入对在原始文档中是前后关系,另外 50% 中是从语料库中随机组成的,并且是与第一句断开的。
为了帮助模型区分开训练中的两个句子,输入在进入模型之前要按以下方式进行处理:

在第一个句子的开头插入 [CLS] 标记,在每个句子的末尾插入 [SEP] 标记。
将表示句子 A 或句子 B 的一个句子 embedding 添加到每个 token 上。
给每个 token 添加一个位置 embedding,来表示它在序列中的位置。

为了预测第二个句子是否是第一个句子的后续句子,用下面几个步骤来预测:

整个输入序列输入给 Transformer 模型
用一个简单的分类层将 [CLS] 标记的输出变换为 2×1 形状的向量
用 softmax 计算 IsNextSequence 的概率

在训练 BERT 模型时,Masked LM 和 Next Sentence Prediction 是一起训练的,目标就是要最小化两种策略的组合损失函数。
NLP TASK10 bert

模型比较

ELMo、GPT、BERT都是近几年提出的模型,在各自提出的时候都取得了不错的成绩。并且相互之间也是相辅相成的关系。

3个模型比较如下:
NLP TASK10 bert
再往前看,在NLP中有着举足轻重地位的模型和思想还有Word2vec、LSTM等。

Word2vec作为里程碑式的进步,对NLP的发展产生了巨大的影响,但Word2vec本身是一种浅层结构,而且其训练的词向量所“学习”到的语义信息受制于窗口大小,因此后续有学者提出利用可以获取长距离依赖的LSTM语言模型预训练词向量,而此种语言模型也有自身的缺陷,因为此种模型是根据句子的上文信息来预测下文的,或者根据下文来预测上文,直观上来说,我们理解语言都要考虑到左右两侧的上下文信息,但传统的LSTM模型只学习到了单向的信息。

NLP TASK10 bert

参考资料

https://mp.weixin.qq.com/s/FHDpx2cYYh9GZsa5nChi4g
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
https://www.jianshu.com/p/d110d0c13063
https://blog.****.net/zh11403070219/article/details/88714369