FFmpeg的H.264解码器源代码简单分析:解析器(Parser)部分
转载:http://blog.****.net/leixiaohua1020/article/details/45001033
本文继续分析FFmpeg中libavcodec的H.264解码器(H.264 Decoder)。上篇文章概述了FFmpeg中H.264解码器的结构;从这篇文章开始,具体研究H.264解码器的源代码。本文分析H.264解码器中解析器(Parser)部分的源代码。这部分的代码用于分割H.264的NALU,并且解析SPS、PPS、SEI等信息。解析H.264码流(对应AVCodecParser结构体中的函数)和解码H.264码流(对应AVCodec结构体中的函数)的时候都会调用该部分的代码完成相应的功能。
解析器(Parser)部分的源代码在整个H.264解码器中的位置如下图所示。
解析器(Parser)部分的源代码的调用关系如下图所示。
从图中可以看出,H.264的解析器(Parser)在解析数据的时候调用h264_parse(),h264_parse()调用了parse_nal_units(),parse_nal_units()则调用了一系列解析特定NALU的函数。H.264的解码器(Decoder)在解码数据的时候调用h264_decode_frame(),h264_decode_frame()调用了decode_nal_units(),decode_nal_units()也同样调用了一系列解析不同NALU的函数。
图中简单列举了几个解析特定NALU的函数:
ff_h264_decode_nal():解析NALU Header
ff_h264_decode_seq_parameter_set():解析SPS
ff_h264_decode_picture_parameter_set():解析PPS
ff_h264_decode_sei():解析SEI
H.264解码器与H.264解析器最主要的不同的地方在于它调用了ff_h264_execute_decode_slices()函数进行了解码工作。这篇文章只分析H.264解析器的源代码,至于H.264解码器的源代码,则在后面几篇文章中再进行分析。
ff_h264_decoder是FFmpeg的H.264解码器对应的AVCodec结构体。它的定义位于libavcodec\h264.c,如下所示。
[cpp] view plain copy
-
AVCodec ff_h264_decoder = {
-
.name = "h264",
-
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
-
.type = AVMEDIA_TYPE_VIDEO,
-
.id = AV_CODEC_ID_H264,
-
.priv_data_size = sizeof(H264Context),
-
.init = ff_h264_decode_init,
-
.close = h264_decode_end,
-
.decode = h264_decode_frame,
-
.capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 |
-
CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS |
-
CODEC_CAP_FRAME_THREADS,
-
.flush = flush_dpb,
-
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
-
.update_thread_context = ONLY_IF_THREADS_ENABLED(ff_h264_update_thread_context),
-
.profiles = NULL_IF_CONFIG_SMALL(profiles),
-
.priv_class = &h264_class,
-
};
从ff_h264_decoder的定义可以看出:解码器初始化的函数指针init()指向ff_h264_decode_init()函数,解码的函数指针decode()指向h264_decode_frame()函数,解码器关闭的函数指针close()指向h264_decode_end()函数。
有关H.264解码器这方面的源代码在以后的文章中再进行详细的分析。在这里我们只需要知道h264_decode_frame()内部调用了decode_nal_units(),而decode_nal_units()调用了和H.264解析器(Parser)有关的源代码就可以了。
ff_h264_parser是FFmpeg的H.264解析器对应的AVCodecParser结构体。它的定义位于libavcodec\h264_parser.c,如下所示。
[cpp] view plain copy
-
AVCodecParser ff_h264_parser = {
-
.codec_ids = { AV_CODEC_ID_H264 },
-
.priv_data_size = sizeof(H264Context),
-
.parser_init = init,
-
.parser_parse = h264_parse,
-
.parser_close = close,
-
.split = h264_split,
-
};
从ff_h264_parser的定义可以看出:AVCodecParser初始化的函数指针parser_init()指向init()函数;解析数据的函数指针parser_parse()指向h264_parse()函数;销毁的函数指针parser_close()指向close()函数。下面分别看看这些函数。
init() [对应于AVCodecParser-> parser_init()]
ff_h264_parser结构体中AVCodecParser的parser_init()指向init()函数。该函数完成了AVCodecParser的初始化工作。函数的定义很简单,如下所示。
[cpp] view plain copy
-
static av_cold int init(AVCodecParserContext *s)
-
{
-
H264Context *h = s->priv_data;
-
h->thread_context[0] = h;
-
h->slice_context_count = 1;
-
ff_h264dsp_init(&h->h264dsp, 8, 1);
-
return 0;
-
}
close() [对应于AVCodecParser-> parser_close()]
ff_h264_parser结构体中AVCodecParser的parser_close()指向close()函数。该函数完成了AVCodecParser的关闭工作。函数的定义也比较简单,如下所示。
[cpp] view plain copy
-
static void close(AVCodecParserContext *s)
-
{
-
H264Context *h = s->priv_data;
-
ParseContext *pc = &h->parse_context;
-
-
av_freep(&pc->buffer);
-
ff_h264_free_context(h);
-
}
h264_parse() [对应于AVCodecParser-> parser_parse()]
ff_h264_parser结构体中AVCodecParser的parser_parse()指向h264_parse()函数。该函数完成了AVCodecParser的解析工作(在这里就是H.264码流的解析工作)。h264_parse()的定义位于libavcodec\h264_parser.c,如下所示。
[cpp] view plain copy
-
//解析H.264码流
-
//输出一个完整的NAL,存储于poutbuf中
-
static int h264_parse(AVCodecParserContext *s,
-
AVCodecContext *avctx,
-
const uint8_t **poutbuf, int *poutbuf_size,
-
const uint8_t *buf, int buf_size)
-
{
-
H264Context *h = s->priv_data;
-
ParseContext *pc = &h->parse_context;
-
int next;
-
//如果还没有解析过1帧,就调用这里解析extradata
-
if (!h->got_first) {
-
h->got_first = 1;
-
if (avctx->extradata_size) {
-
h->avctx = avctx;
-
// must be done like in decoder, otherwise opening the parser,
-
// letting it create extradata and then closing and opening again
-
// will cause has_b_frames to be always set.
-
// Note that estimate_timings_from_pts does exactly this.
-
if (!avctx->has_b_frames)
-
h->low_delay = 1;
-
//解析AVCodecContext的extradata
-
ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size);
-
}
-
}
-
//输入的数据是完整的一帧?
-
//这里通过设置flags的PARSER_FLAG_COMPLETE_FRAMES来确定
-
if (s->flags & PARSER_FLAG_COMPLETE_FRAMES) {
-
//和缓存大小一样
-
next = buf_size;
-
} else {
-
//查找帧结尾(帧开始)位置
-
//以"起始码"为依据(0x000001或0x00000001)
-
next = h264_find_frame_end(h, buf, buf_size);
-
//组帧
-
if (ff_combine_frame(pc, next, &buf, &buf_size) < 0) {
-
*poutbuf = NULL;
-
*poutbuf_size = 0;
-
return buf_size;
-
}
-
-
if (next < 0 && next != END_NOT_FOUND) {
-
av_assert1(pc->last_index + next >= 0);
-
h264_find_frame_end(h, &pc->buffer[pc->last_index + next], -next); // update state
-
}
-
}
-
//解析NALU,从SPS、PPS、SEI等中获得一些基本信息。
-
//此时buf中存储的是完整的1帧数据
-
parse_nal_units(s, avctx, buf, buf_size);
-
-
if (avctx->framerate.num)
-
avctx->time_base = av_inv_q(av_mul_q(avctx->framerate, (AVRational){avctx->ticks_per_frame, 1}));
-
if (h->sei_cpb_removal_delay >= 0) {
-
s->dts_sync_point = h->sei_buffering_period_present;
-
s->dts_ref_dts_delta = h->sei_cpb_removal_delay;
-
s->pts_dts_delta = h->sei_dpb_output_delay;
-
} else {
-
s->dts_sync_point = INT_MIN;
-
s->dts_ref_dts_delta = INT_MIN;
-
s->pts_dts_delta = INT_MIN;
-
}
-
-
if (s->flags & PARSER_FLAG_ONCE) {
-
s->flags &= PARSER_FLAG_COMPLETE_FRAMES;
-
}
-
//分割后的帧数据输出至poutbuf
-
*poutbuf = buf;
-
*poutbuf_size = buf_size;
-
return next;
-
}
从源代码可以看出,h264_parse()主要完成了以下3步工作:
(1)如果是第一次解析,则首先调用ff_h264_decode_extradata()解析AVCodecContext的extradata(里面实际上存储了H.264的SPS、PPS)。
(2)如果传入的flags中包含PARSER_FLAG_COMPLETE_FRAMES,则说明传入的是完整的一帧数据,不作任何处理;如果不包含PARSER_FLAG_COMPLETE_FRAMES,则说明传入的不是完整的一帧数据而是任意一段H.264数据,则需要调用h264_find_frame_end()通过查找"起始码"(0x00000001或者0x000001)的方法,分离出完整的一帧数据。
(3)调用parse_nal_units()完成了NALU的解析工作。
下面分别看一下这3步中涉及到的函数:ff_h264_decode_extradata(),h264_find_frame_end(),parse_nal_units()。
ff_h264_decode_extradata()用于解析AVCodecContext的extradata(里面实际上存储了H.264的SPS、PPS)。ff_h264_decode_extradata()的定义如下所示。
[cpp] view plain copy
-
//解析extradata
-
//最常见的就是解析AVCodecContext的extradata。其中extradata实际上存储的就是SPS、PPS
-
int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size)
-
{
-
AVCodecContext *avctx = h->avctx;
-
int ret;
-
-
if (!buf || size <= 0)
-
return -1;
-
-
if (buf[0] == 1) {
-
int i, cnt, nalsize;
-
const unsigned char *p = buf;
-
-
//AVC1 描述:H.264 bitstream without start codes.是不带起始码0×00000001的。MKV/MOV/FLV中的H.264属于这种类型
-
//H264 描述:H.264 bitstream with start codes.是带有起始码0×00000001的。MPEGTS中的H.264,或者H.264裸流属于这种类型
-
h->is_avc = 1;
-
//数据量太小
-
//随意测了一个视频
-
//SPS: 30 Byte
-
//PPS: 6 Byte
-
if (size < 7) {
-
av_log(avctx, AV_LOG_ERROR,
-
"avcC %d too short\n", size);
-
return AVERROR_INVALIDDATA;
-
}
-
/* sps and pps in the avcC always have length coded with 2 bytes,
-
* so put a fake nal_length_size = 2 while parsing them */
-
h->nal_length_size = 2;
-
// Decode sps from avcC
-
//解码SPS
-
cnt = *(p + 5) & 0x1f; // Number of sps
-
p += 6;
-
for (i = 0; i < cnt; i++) {
-
nalsize = AV_RB16(p) + 2;
-
if(nalsize > size - (p-buf))
-
return AVERROR_INVALIDDATA;
-
//解析
-
ret = decode_nal_units(h, p, nalsize, 1);
-
if (ret < 0) {
-
av_log(avctx, AV_LOG_ERROR,
-
"Decoding sps %d from avcC failed\n", i);
-
return ret;
-
}
-
p += nalsize;
-
}
-
// Decode pps from avcC
-
//解码PPS
-
cnt = *(p++); // Number of pps
-
for (i = 0; i < cnt; i++) {
-
nalsize = AV_RB16(p) + 2;
-
if(nalsize > size - (p-buf))
-
return AVERROR_INVALIDDATA;
-
ret = decode_nal_units(h, p, nalsize, 1);
-
if (ret < 0) {
-
av_log(avctx, AV_LOG_ERROR,
-
"Decoding pps %d from avcC failed\n", i);
-
return ret;
-
}
-
p += nalsize;
-
}
-
// Store right nal length size that will be used to parse all other nals
-
h->nal_length_size = (buf[4] & 0x03) + 1;
-
} else {
-
h->is_avc = 0;
-
//解析
-
ret = decode_nal_units(h, buf, size, 1);
-
if (ret < 0)
-
return ret;
-
}
-
return size;
-
}
从源代码中可以看出,ff_h264_decode_extradata()调用decode_nal_units()解析SPS、PPS信息。有关decode_nal_units()的源代码在后续文章中再进行分析。
h264_find_frame_end()用于查找H.264码流中的"起始码"(start code)。在H.264码流中有两种起始码:0x000001和0x00000001。其中4Byte的长度的起始码最为常见。只有当一个完整的帧被编为多个slice的时候,包含这些slice的NALU才会使用3Byte的起始码。h264_find_frame_end()的定义位于libavcodec\h264_parser.c,如下所示。
[cpp] view plain copy
-
//查找帧结尾(帧开始)位置
-
//
-
//几种状态state:
-
//2 - 找到1个0
-
//1 - 找到2个0
-
//0 - 找到大于等于3个0
-
//4 - 找到2个0和1个1,即001(即找到了起始码)
-
//5 - 找到至少3个0和1个1,即0001等等(即找到了起始码)
-
//7 - 初始化状态
-
//>=8 - 找到2个Slice Header
-
//
-
//关于起始码startcode的两种形式:3字节的0x000001和4字节的0x00000001
-
//3字节的0x000001只有一种场合下使用,就是一个完整的帧被编为多个slice的时候,
-
//包含这些slice的nalu使用3字节起始码。其余场合都是4字节的。
-
//
-
static int h264_find_frame_end(H264Context *h, const uint8_t *buf,
-
int buf_size)
-
{
-
int i, j;
-
uint32_t state;
-
ParseContext *pc = &h->parse_context;
-
int next_avc= h->is_avc ? 0 : buf_size;
-
-
// mb_addr= pc->mb_addr - 1;
-
state = pc->state;
-
if (state > 13)
-
state = 7;
-
-
if (h->is_avc && !h->nal_length_size)
-
av_log(h->avctx, AV_LOG_ERROR, "AVC-parser: nal length size invalid\n");
-
//
-
//每次循环前进1个字节,读取该字节的值
-
//根据此前的状态state做不同的处理
-
//state取值为4,5代表找到了起始码
-
//类似于一个状态机,简单画一下状态转移图:
-
// +-----+
-
// | |
-
// v |
-
// 7--(0)-->2--(0)-->1--(0)-->0-(0)-+
-
// ^ | | |
-
// | (1) (1) (1)
-
// | | | |
-
// +--------+ v v
-
// 4 5
-
//
-
for (i = 0; i < buf_size; i++) {
-
//超过了
-
if (i >= next_avc) {
-
int nalsize = 0;
-
i = next_avc;
-
for (j = 0; j < h->nal_length_size; j++)
-
nalsize = (nalsize << 8) | buf[i++];
-
if (nalsize <= 0 || nalsize > buf_size - i) {
-
av_log(h->avctx, AV_LOG_ERROR, "AVC-parser: nal size %d remaining %d\n", nalsize, buf_size - i);
-
return buf_size;
-
}
-
next_avc = i + nalsize;
-
state = 5;
-
}
-
//初始state为7
-
if (state == 7) {
-
//查找startcode的候选者?
-
//从一段内存中查找取值为0的元素的位置并返回
-
//增加i取值
-
i += h->h264dsp.startcode_find_candidate(buf + i, next_avc - i);
-
//因为找到1个0,状态转换为2
-
if (i < next_avc)
-
state = 2;
-
} else if (state <= 2) { //找到0时候的state。包括1个0(状态2),2个0(状态1),或者3个及3个以上0(状态0)。
-
if (buf[i] == 1) //发现了一个1
-
state ^= 5; //状态转换关系:2->7, 1->4, 0->5。状态4代表找到了001,状态5代表找到了0001
-
else if (buf[i])
-
state = 7; //恢复初始
-
else //发现了一个0
-
state >>= 1; // 2->1, 1->0, 0->0
-
} else if (state <= 5) {
-
//状态4代表找到了001,状态5代表找到了0001
-
//获取NALU类型
-
//NALU Header(1Byte)的后5bit
-
int nalu_type = buf[i] & 0x1F;
-
-
if (nalu_type == NAL_SEI || nalu_type == NAL_SPS ||
-
nalu_type == NAL_PPS || nalu_type == NAL_AUD) {
-
//SPS,PPS,SEI类型的NALU
-
if (pc->frame_start_found) { //如果之前已找到了帧头
-
i++;
-
goto found;
-
}
-
} else if (nalu_type == NAL_SLICE || nalu_type == NAL_DPA ||
-
nalu_type == NAL_IDR_SLICE) {
-
//表示有slice header的NALU
-
//大于等于8的状态表示找到了两个帧头,但没有找到帧尾的状态
-
state += 8;
-
continue;
-
}
-
//上述两个条件都不满足,回归初始状态(state取值7)
-
state = 7;
-
} else {
-
h->parse_history[h->parse_history_count++]= buf[i];
-
if (h->parse_history_count>5) {
-
unsigned int mb, last_mb= h->parse_last_mb;
-
GetBitContext gb;
-
-
init_get_bits(&gb, h->parse_history, 8*h->parse_history_count);
-
h->parse_history_count=0;
-
mb= get_ue_golomb_long(&gb);
-
h->parse_last_mb= mb;
-
if (pc->frame_start_found) {
-
if (mb <= last_mb)
-
goto found;
-
} else
-
pc->frame_start_found = 1;
-
state = 7;
-
}
-
}
-
}
-
pc->state = state;
-
if (h->is_avc)
-
return next_avc;
-
//没找到
-
return END_NOT_FOUND;
-
-
found:
-
pc->state = 7;
-
pc->frame_start_found = 0;
-
if (h->is_avc)
-
return next_avc;
-
//state=4时候,state & 5=4
-
//找到的是001(长度为3),i减小3+1=4,标识帧结尾
-
//state=5时候,state & 5=5
-
//找到的是0001(长度为4),i减小4+1=5,标识帧结尾
-
return i - (state & 5) - 5 * (state > 7);
-
}
从源代码可以看出,h264_find_frame_end()使用了一种类似于状态机的方式查找起始码。函数中的for()循环每执行一遍,状态机的状态就会改变一次。该状态机主要包含以下几种状态:
7 -初始化状态
2 - 找到1个0
1 - 找到2个0
0 - 找到大于等于3个0
4 - 找到2个0和1个1,即001(即找到了起始码)
5 - 找到至少3个0和1个1,即0001等等(即找到了起始码)
>=8 - 找到2个Slice Header
这些状态之间的状态转移图如下所示。图中粉红色代表初始状态,绿色代表找到"起始码"的状态。
如图所示,h264_find_frame_end()初始化时候位于状态"7";当找到1个"0"之后,状态从"7"变为"2";在状态"2"下,如果再次找到1个"0",则状态变为"1";在状态"1"下,如果找到"1",则状态变换为"4",表明找到了"0x000001"起始码;在状态"1"下,如果找到"0",则状态变换为"0";在状态"0"下,如果找到"1",则状态变换为"5",表明找到了"0x000001"起始码。
startcode_find_candidate()
其中,在查找数据中第1个"0"的时候,使用了H264DSPContext结构体中的startcode_find_candidate()函数。startcode_find_candidate()除了包含C语言版本的函数外,还包含了ARMV6等平台下经过汇编优化的函数(估计效率会比C语言版本函数高一些)。C语言版本的函数ff_startcode_find_candidate_c()的定义很简单,位于libavcodec\startcode.c,如下所示。
[cpp] view plain copy
-
int ff_startcode_find_candidate_c(const uint8_t *buf, int size)
-
{
-
int i = 0;
-
for (; i < size; i++)
-
if (!buf[i])
-
break;
-
return i;
-
}
parse_nal_units()用于解析NALU,从SPS、PPS、SEI等中获得一些基本信息。在该函数中,根据NALU的不同,分别调用不同的函数进行具体的处理。parse_nal_units()的定义位于libavcodec\h264_parser.c,如下所示。
[cpp] view plain copy
-
/**
-
* Parse NAL units of found picture and decode some basic information.
-
*
-
* @param s parser context.
-
* @param avctx codec context.
-
* @param buf buffer with field/frame data.
-
* @param buf_size size of the buffer.
-
*/
-
//解析NALU,从SPS、PPS、SEI等中获得一些基本信息。
-
static inline int parse_nal_units(AVCodecParserContext *s,
-
AVCodecContext *avctx,
-
const uint8_t * const buf, int buf_size)
-
{
-
H264Context *h = s->priv_data;
-
int buf_index, next_avc;
-
unsigned int pps_id;
-
unsigned int slice_type;
-
int state = -1, got_reset = 0;
-
const uint8_t *ptr;
-
int q264 = buf_size >=4 && !memcmp("Q264", buf, 4);
-
int field_poc[2];
-
-
/* set some sane default values */
-
s->pict_type = AV_PICTURE_TYPE_I;
-
s->key_frame = 0;
-
s->picture_structure = AV_PICTURE_STRUCTURE_UNKNOWN;
-
-
h->avctx = avctx;
-
ff_h264_reset_sei(h);
-
h->sei_fpa.frame_packing_arrangement_cancel_flag = -1;
-
-
if (!buf_size)
-
return 0;
-
-
buf_index = 0;
-
next_avc = h->is_avc ? 0 : buf_size;
-
for (;;) {
-
int src_length, dst_length, consumed, nalsize = 0;
-
-
if (buf_index >= next_avc) {
-
nalsize = get_avc_nalsize(h, buf, buf_size, &buf_index);
-
if (nalsize < 0)
-
break;
-
next_avc = buf_index + nalsize;
-
} else {
-
buf_index = find_start_code(buf, buf_size, buf_index, next_avc);
-
if (buf_index >= buf_size)
-
break;
-
if (buf_index >= next_avc)
-
continue;
-
}
-
src_length = next_avc - buf_index;
-
//NALU Header (1 Byte)
-
state = buf[buf_index];
-
switch (state & 0x1f) {
-
case NAL_SLICE:
-
case NAL_IDR_SLICE:
-
// Do not walk the whole buffer just to decode slice header
-
if ((state & 0x1f) == NAL_IDR_SLICE || ((state >> 5) & 0x3) == 0) {
-
/* IDR or disposable slice
-
* No need to decode many bytes because MMCOs shall not be present. */
-
if (src_length > 60)
-
src_length = 60;
-
} else {
-
/* To decode up to MMCOs */
-
if (src_length > 1000)
-
src_length = 1000;
-
}
-
break;
-
}
-
//解析NAL Header,获得nal_unit_type等信息
-
ptr = ff_h264_decode_nal(h, buf + buf_index, &dst_length,
-
&consumed, src_length);
-
if (!ptr || dst_length < 0)
-
break;
-
-
buf_index += consumed;
-
//初始化GetBitContext
-
//H264Context->gb
-
//后面的解析都是从这里获取数据
-
init_get_bits(&h->gb, ptr, 8 * dst_length);
-
switch (h->nal_unit_type) {
-
case NAL_SPS:
-
//解析SPS
-
ff_h264_decode_seq_parameter_set(h);
-
break;
-
case NAL_PPS:
-
//解析PPS
-
ff_h264_decode_picture_parameter_set(h, h->gb.size_in_bits);
-
break;
-
case NAL_SEI:
-
//解析SEI
-
ff_h264_decode_sei(h);
-
break;
-
case NAL_IDR_SLICE:
-
//如果是IDR Slice
-
//赋值AVCodecParserContext的key_frame为1
-
s->key_frame = 1;
-
-
h->prev_frame_num = 0;
-
h->prev_frame_num_offset = 0;
-
h->prev_poc_msb =
-
h->prev_poc_lsb = 0;
-
/* fall through */
-
case NAL_SLICE:
-
//获取Slice的一些信息
-
//跳过first_mb_in_slice这一字段
-
get_ue_golomb_long(&h->gb); // skip first_mb_in_slice
-
//获取帧类型(I,B,P)
-
slice_type = get_ue_golomb_31(&h->gb);
-
//赋值到AVCodecParserContext的pict_type(外部可以访问到)
-
s->pict_type = golomb_to_pict_type[slice_type % 5];
-
//关键帧
-
if (h->sei_recovery_frame_cnt >= 0) {
-
/* key frame, since recovery_frame_cnt is set */
-
//赋值AVCodecParserContext的key_frame为1
-
s->key_frame = 1;
-
}
-
//获取 PPS ID
-
pps_id = get_ue_golomb(&h->gb);
-
if (pps_id >= MAX_PPS_COUNT) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"pps_id %u out of range\n", pps_id);
-
return -1;
-
}
-
if (!h->pps_buffers[pps_id]) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"non-existing PPS %u referenced\n", pps_id);
-
return -1;
-
}
-
h->pps = *h->pps_buffers[pps_id];
-
if (!h->sps_buffers[h->pps.sps_id]) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"non-existing SPS %u referenced\n", h->pps.sps_id);
-
return -1;
-
}
-
h->sps = *h->sps_buffers[h->pps.sps_id];
-
h->frame_num = get_bits(&h->gb, h->sps.log2_max_frame_num);
-
-
if(h->sps.ref_frame_count <= 1 && h->pps.ref_count[0] <= 1 && s->pict_type == AV_PICTURE_TYPE_I)
-
s->key_frame = 1;
-
//获得"型"和"级"
-
//赋值到AVCodecContext的profile和level
-
avctx->profile = ff_h264_get_profile(&h->sps);
-
avctx->level = h->sps.level_idc;
-
-
if (h->sps.frame_mbs_only_flag) {
-
h->picture_structure = PICT_FRAME;
-
} else {
-
if (get_bits1(&h->gb)) { // field_pic_flag
-
h->picture_structure = PICT_TOP_FIELD + get_bits1(&h->gb); // bottom_field_flag
-
} else {
-
h->picture_structure = PICT_FRAME;
-
}
-
}
-
-
if (h->nal_unit_type == NAL_IDR_SLICE)
-
get_ue_golomb(&h->gb); /* idr_pic_id */
-
if (h->sps.poc_type == 0) {
-
h->poc_lsb = get_bits(&h->gb, h->sps.log2_max_poc_lsb);
-
-
if (h->pps.pic_order_present == 1 &&
-
h->picture_structure == PICT_FRAME)
-
h->delta_poc_bottom = get_se_golomb(&h->gb);
-
}
-
-
if (h->sps.poc_type == 1 &&
-
!h->sps.delta_pic_order_always_zero_flag) {
-
h->delta_poc[0] = get_se_golomb(&h->gb);
-
-
if (h->pps.pic_order_present == 1 &&
-
h->picture_structure == PICT_FRAME)
-
h->delta_poc[1] = get_se_golomb(&h->gb);
-
}
-
-
/* Decode POC of this picture.
-
* The prev_ values needed for decoding POC of the next picture are not set here. */
-
field_poc[0] = field_poc[1] = INT_MAX;
-
ff_init_poc(h, field_poc, &s->output_picture_number);
-
-
/* Continue parsing to check if MMCO_RESET is present.
-
* FIXME: MMCO_RESET could appear in non-first slice.
-
* Maybe, we should parse all undisposable non-IDR slice of this
-
* picture until encountering MMCO_RESET in a slice of it. */
-
if (h->nal_ref_idc && h->nal_unit_type != NAL_IDR_SLICE) {
-
got_reset = scan_mmco_reset(s);
-
if (got_reset < 0)
-
return got_reset;
-
}
-
-
/* Set up the prev_ values for decoding POC of the next picture. */
-
h->prev_frame_num = got_reset ? 0 : h->frame_num;
-
h->prev_frame_num_offset = got_reset ? 0 : h->frame_num_offset;
-
if (h->nal_ref_idc != 0) {
-
if (!got_reset) {
-
h->prev_poc_msb = h->poc_msb;
-
h->prev_poc_lsb = h->poc_lsb;
-
} else {
-
h->prev_poc_msb = 0;
-
h->prev_poc_lsb =
-
h->picture_structure == PICT_BOTTOM_FIELD ? 0 : field_poc[0];
-
}
-
}
-
//包含"场"概念的时候,先不管
-
if (h->sps.pic_struct_present_flag) {
-
switch (h->sei_pic_struct) {
-
case SEI_PIC_STRUCT_TOP_FIELD:
-
case SEI_PIC_STRUCT_BOTTOM_FIELD:
-
s->repeat_pict = 0;
-
break;
-
case SEI_PIC_STRUCT_FRAME:
-
case SEI_PIC_STRUCT_TOP_BOTTOM:
-
case SEI_PIC_STRUCT_BOTTOM_TOP:
-
s->repeat_pict = 1;
-
break;
-
case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
-
case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
-
s->repeat_pict = 2;
-
break;
-
case SEI_PIC_STRUCT_FRAME_DOUBLING:
-
s->repeat_pict = 3;
-
break;
-
case SEI_PIC_STRUCT_FRAME_TRIPLING:
-
s->repeat_pict = 5;
-
break;
-
default:
-
s->repeat_pict = h->picture_structure == PICT_FRAME ? 1 : 0;
-
break;
-
}
-
} else {
-
s->repeat_pict = h->picture_structure == PICT_FRAME ? 1 : 0;
-
}
-
-
if (h->picture_structure == PICT_FRAME) {
-
s->picture_structure = AV_PICTURE_STRUCTURE_FRAME;
-
if (h->sps.pic_struct_present_flag) {
-
switch (h->sei_pic_struct) {
-
case SEI_PIC_STRUCT_TOP_BOTTOM:
-
case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
-
s->field_order = AV_FIELD_TT;
-
break;
-
case SEI_PIC_STRUCT_BOTTOM_TOP:
-
case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
-
s->field_order = AV_FIELD_BB;
-
break;
-
default:
-
s->field_order = AV_FIELD_PROGRESSIVE;
-
break;
-
}
-
} else {
-
if (field_poc[0] < field_poc[1])
-
s->field_order = AV_FIELD_TT;
-
else if (field_poc[0] > field_poc[1])
-
s->field_order = AV_FIELD_BB;
-
else
-
s->field_order = AV_FIELD_PROGRESSIVE;
-
}
-
} else {
-
if (h->picture_structure == PICT_TOP_FIELD)
-
s->picture_structure = AV_PICTURE_STRUCTURE_TOP_FIELD;
-
else
-
s->picture_structure = AV_PICTURE_STRUCTURE_BOTTOM_FIELD;
-
s->field_order = AV_FIELD_UNKNOWN;
-
}
-
-
return 0; /* no need to evaluate the rest */
-
}
-
}
-
if (q264)
-
return 0;
-
/* didn't find a picture! */
-
av_log(h->avctx, AV_LOG_ERROR, "missing picture in access unit with size %d\n", buf_size);
-
return -1;
-
}
从源代码可以看出,parse_nal_units()主要做了以下几步处理:
(1)对于所有的NALU,都调用ff_h264_decode_nal解析NALU的Header,得到nal_unit_type等信息
(2)根据nal_unit_type的不同,调用不同的解析函数进行处理。例如:
a)解析SPS的时候调用ff_h264_decode_seq_parameter_set()
b)解析PPS的时候调用ff_h264_decode_picture_parameter_set()
c)解析SEI的时候调用ff_h264_decode_sei()
d)解析IDR Slice / Slice的时候,获取slice_type等一些信息。
ff_h264_decode_nal()用于解析NAL Header,获得nal_unit_type等信息。该函数的定义位于libavcodec\h264.c,如下所示。
[cpp] view plain copy
-
//解析NAL Header,获得nal_unit_type等信息
-
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
-
int *dst_length, int *consumed, int length)
-
{
-
int i, si, di;
-
uint8_t *dst;
-
int bufidx;
-
-
// src[0]&0x80; // forbidden bit
-
//
-
// 1 byte NALU头
-
// forbidden_zero_bit: 1bit
-
// nal_ref_idc: 2bit
-
// nal_unit_type: 5bit
-
// nal_ref_idc指示NAL的优先级,取值0-3,值越高,代表NAL越重要
-
h->nal_ref_idc = src[0] >> 5;
-
// nal_unit_type指示NAL的类型
-
h->nal_unit_type = src[0] & 0x1F;
-
//后移1Byte
-
src++;
-
//未处理数据长度减1
-
length--;
-
-
//起始码:0x000001
-
//保留:0x000002
-
//防止竞争:0x000003
-
//既表示NALU的开始,又表示NALU的结束
-
//STARTCODE_TEST这个宏在后面用到
-
//得到length
-
//length是指当前NALU单元长度,这里不包括nalu头信息长度(即1个字节)
-
#define STARTCODE_TEST \
-
if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
-
if (src[i + 2] != 3 && src[i + 2] != 0) { \
-
/* 取值为1或者2(保留用),为起始码。startcode, so we must be past the end */\
-
length = i; \
-
} \
-
break; \
-
}
-
-
#if HAVE_FAST_UNALIGNED
-
#define FIND_FIRST_ZERO \
-
if (i > 0 && !src[i]) \
-
i--; \
-
while (src[i]) \
-
i++
-
-
#if HAVE_FAST_64BIT
-
for (i = 0; i + 1 < length; i += 9) {
-
if (!((~AV_RN64A(src + i) &
-
(AV_RN64A(src + i) - 0x0100010001000101ULL)) &
-
0x8000800080008080ULL))
-
continue;
-
FIND_FIRST_ZERO;
-
STARTCODE_TEST;
-
i -= 7;
-
}
-
#else
-
for (i = 0; i + 1 < length; i += 5) {
-
if (!((~AV_RN32A(src + i) &
-
(AV_RN32A(src + i) - 0x01000101U)) &
-
0x80008080U))
-
continue;
-
FIND_FIRST_ZERO;
-
STARTCODE_TEST;
-
i -= 3;
-
}
-
#endif
-
#else
-
for (i = 0; i + 1 < length; i += 2) {
-
if (src[i])
-
continue;
-
if (i > 0 && src[i - 1] == 0)
-
i--;
-
//起始码检测
-
STARTCODE_TEST;
-
}
-
#endif
-
-
// use second escape buffer for inter data
-
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0;
-
-
av_fast_padded_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+MAX_MBPAIR_SIZE);
-
dst = h->rbsp_buffer[bufidx];
-
-
if (!dst)
-
return NULL;
-
-
if(i>=length-1){ //no escaped 0
-
*dst_length= length;
-
*consumed= length+1; //+1 for the header
-
if(h->avctx->flags2 & CODEC_FLAG2_FAST){
-
return src;
-
}else{
-
memcpy(dst, src, length);
-
return dst;
-
}
-
}
-
-
memcpy(dst, src, i);
-
si = di = i;
-
while (si + 2 < length) {
-
// remove escapes (very rare 1:2^22)
-
if (src[si + 2] > 3) {
-
dst[di++] = src[si++];
-
dst[di++] = src[si++];
-
} else if (src[si] == 0 && src[si + 1] == 0 && src[si + 2] != 0) {
-
if (src[si + 2] == 3) { // escape
-
dst[di++] = 0;
-
dst[di++] = 0;
-
si += 3;
-
continue;
-
} else // next start code
-
goto nsc;
-
}
-
-
dst[di++] = src[si++];
-
}
-
while (si < length)
-
dst[di++] = src[si++];
-
-
nsc:
-
memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
-
-
*dst_length = di;
-
*consumed = si + 1; // +1 for the header
-
/* FIXME store exact number of bits in the getbitcontext
-
* (it is needed for decoding) */
-
return dst;
-
}
从源代码可以看出,ff_h264_decode_nal()首先从NALU
Header(NALU第1个字节)中解析出了nal_ref_idc,nal_unit_type字段的值。然后函数进入了一个for()循环进行起始码检测。
起始码检测这里稍微有点复杂,其中包含了一个STARTCODE_TEST的宏。这个宏用于做具体的起始码的判断。这部分的代码还没有细看,以后有时间再进行补充。
ff_h264_decode_seq_parameter_set()
ff_h264_decode_seq_parameter_set()用于解析H.264码流中的SPS。该函数的定义位于libavcodec\h264_ps.c,如下所示。
[cpp] view plain copy
-
//解码SPS
-
int ff_h264_decode_seq_parameter_set(H264Context *h)
-
{
-
int profile_idc, level_idc, constraint_set_flags = 0;
-
unsigned int sps_id;
-
int i, log2_max_frame_num_minus4;
-
-
SPS *sps;
-
//profile型,8bit
-
//注意get_bits()
-
profile_idc = get_bits(&h->gb, 8);
-
constraint_set_flags |= get_bits1(&h->gb) << 0; // constraint_set0_flag
-
constraint_set_flags |= get_bits1(&h->gb) << 1; // constraint_set1_flag
-
constraint_set_flags |= get_bits1(&h->gb) << 2; // constraint_set2_flag
-
constraint_set_flags |= get_bits1(&h->gb) << 3; // constraint_set3_flag
-
constraint_set_flags |= get_bits1(&h->gb) << 4; // constraint_set4_flag
-
constraint_set_flags |= get_bits1(&h->gb) << 5; // constraint_set5_flag
-
skip_bits(&h->gb, 2); // reserved_zero_2bits
-
//level级,8bit
-
level_idc = get_bits(&h->gb, 8);
-
//该SPS的ID号,该ID号将被picture引用
-
//注意:get_ue_golomb()
-
sps_id = get_ue_golomb_31(&h->gb);
-
-
if (sps_id >= MAX_SPS_COUNT) {
-
av_log(h->avctx, AV_LOG_ERROR, "sps_id %u out of range\n", sps_id);
-
return AVERROR_INVALIDDATA;
-
}
-
//赋值给这个结构体
-
sps = av_mallocz(sizeof(SPS));
-
if (!sps)
-
return AVERROR(ENOMEM);
-
//赋值
-
sps->sps_id = sps_id;
-
sps->time_offset_length = 24;
-
sps->profile_idc = profile_idc;
-
sps->constraint_set_flags = constraint_set_flags;
-
sps->level_idc = level_idc;
-
sps->full_range = -1;
-
-
memset(sps->scaling_matrix4, 16, sizeof(sps->scaling_matrix4));
-
memset(sps->scaling_matrix8, 16, sizeof(sps->scaling_matrix8));
-
sps->scaling_matrix_present = 0;
-
sps->colorspace = 2; //AVCOL_SPC_UNSPECIFIED
-
//Profile对应关系
-
if (sps->profile_idc == 100 || // High profile
-
sps->profile_idc == 110 || // High10 profile
-
sps->profile_idc == 122 || // High422 profile
-
sps->profile_idc == 244 || // High444 Predictive profile
-
sps->profile_idc == 44 || // Cavlc444 profile
-
sps->profile_idc == 83 || // Scalable Constrained High profile (SVC)
-
sps->profile_idc == 86 || // Scalable High Intra profile (SVC)
-
sps->profile_idc == 118 || // Stereo High profile (MVC)
-
sps->profile_idc == 128 || // Multiview High profile (MVC)
-
sps->profile_idc == 138 || // Multiview Depth High profile (MVCD)
-
sps->profile_idc == 144) { // old High444 profile
-
-
//色度取样
-
//0代表单色
-
//1代表4:2:0
-
//2代表4:2:2
-
//3代表4:4:4
-
sps->chroma_format_idc = get_ue_golomb_31(&h->gb);
-
if (sps->chroma_format_idc > 3U) {
-
avpriv_request_sample(h->avctx, "chroma_format_idc %u",
-
sps->chroma_format_idc);
-
goto fail;
-
} else if (sps->chroma_format_idc == 3) {
-
sps->residual_color_transform_flag = get_bits1(&h->gb);
-
if (sps->residual_color_transform_flag) {
-
av_log(h->avctx, AV_LOG_ERROR, "separate color planes are not supported\n");
-
goto fail;
-
}
-
}
-
//bit_depth_luma_minus8
-
//加8之后为亮度颜色深度
-
//该值取值范围应该在0到4之间。即颜色深度支持0-12bit
-
sps->bit_depth_luma = get_ue_golomb(&h->gb) + 8;
-
//加8之后为色度颜色深度
-
sps->bit_depth_chroma = get_ue_golomb(&h->gb) + 8;
-
if (sps->bit_depth_chroma != sps->bit_depth_luma) {
-
avpriv_request_sample(h->avctx,
-
"Different chroma and luma bit depth");
-
goto fail;
-
}
-
if (sps->bit_depth_luma > 14U || sps->bit_depth_chroma > 14U) {
-
av_log(h->avctx, AV_LOG_ERROR, "illegal bit depth value (%d, %d)\n",
-
sps->bit_depth_luma, sps->bit_depth_chroma);
-
goto fail;
-
}
-
sps->transform_bypass = get_bits1(&h->gb);
-
decode_scaling_matrices(h, sps, NULL, 1,
-
sps->scaling_matrix4, sps->scaling_matrix8);
-
} else {
-
//默认
-
sps->chroma_format_idc = 1;
-
sps->bit_depth_luma = 8;
-
sps->bit_depth_chroma = 8;
-
}
-
//log2_max_frame_num_minus4为另一个句法元素frame_num服务
-
//fram_num的解码函数是ue(v),函数中的v 在这里指定:
-
// v = log2_max_frame_num_minus4 + 4
-
//从另一个角度看,这个句法元素同时也指明了frame_num 的所能达到的最大值:
-
// MaxFrameNum = 2^( log2_max_frame_num_minus4 + 4 )
-
log2_max_frame_num_minus4 = get_ue_golomb(&h->gb);
-
if (log2_max_frame_num_minus4 < MIN_LOG2_MAX_FRAME_NUM - 4 ||
-
log2_max_frame_num_minus4 > MAX_LOG2_MAX_FRAME_NUM - 4) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"log2_max_frame_num_minus4 out of range (0-12): %d\n",
-
log2_max_frame_num_minus4);
-
goto fail;
-
}
-
sps->log2_max_frame_num = log2_max_frame_num_minus4 + 4;
-
//pic_order_cnt_type 指明了poc (picture order count) 的编码方法
-
//poc标识图像的播放顺序。
-
//由于H.264使用了B帧预测,使得图像的解码顺序并不一定等于播放顺序,但它们之间存在一定的映射关系
-
//poc 可以由frame-num 通过映射关系计算得来,也可以索性由编码器显式地传送。
-
//H.264 中一共定义了三种poc 的编码方法
-
sps->poc_type = get_ue_golomb_31(&h->gb);
-
//3种poc的编码方法
-
if (sps->poc_type == 0) { // FIXME #define
-
unsigned t = get_ue_golomb(&h->gb);
-
if (t>12) {
-
av_log(h->avctx, AV_LOG_ERROR, "log2_max_poc_lsb (%d) is out of range\n", t);
-
goto fail;
-
}
-
sps->log2_max_poc_lsb = t + 4;
-
} else if (sps->poc_type == 1) { // FIXME #define
-
sps->delta_pic_order_always_zero_flag = get_bits1(&h->gb);
-
sps->offset_for_non_ref_pic = get_se_golomb(&h->gb);
-
sps->offset_for_top_to_bottom_field = get_se_golomb(&h->gb);
-
sps->poc_cycle_length = get_ue_golomb(&h->gb);
-
-
if ((unsigned)sps->poc_cycle_length >=
-
FF_ARRAY_ELEMS(sps->offset_for_ref_frame)) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"poc_cycle_length overflow %d\n", sps->poc_cycle_length);
-
goto fail;
-
}
-
-
for (i = 0; i < sps->poc_cycle_length; i++)
-
sps->offset_for_ref_frame[i] = get_se_golomb(&h->gb);
-
} else if (sps->poc_type != 2) {
-
av_log(h->avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
-
goto fail;
-
}
-
//num_ref_frames 指定参考帧队列可能达到的最大长度,解码器依照这个句法元素的值开辟存储区,这个存储区用于存放已解码的参考帧,
-
//H.264 规定最多可用16 个参考帧,因此最大值为16。
-
sps->ref_frame_count = get_ue_golomb_31(&h->gb);
-
if (h->avctx->codec_tag == MKTAG('S', 'M', 'V', '2'))
-
sps->ref_frame_count = FFMAX(2, sps->ref_frame_count);
-
if (sps->ref_frame_count > H264_MAX_PICTURE_COUNT - 2 ||
-
sps->ref_frame_count > 16U) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"too many reference frames %d\n", sps->ref_frame_count);
-
goto fail;
-
}
-
sps->gaps_in_frame_num_allowed_flag = get_bits1(&h->gb);
-
//加1后为图像宽(以宏块为单位)
-
//以像素为单位图像宽度(亮度):width=mb_width*16
-
sps->mb_width = get_ue_golomb(&h->gb) + 1;
-
//加1后为图像高(以宏块为单位)
-
//以像素为单位图像高度(亮度):height=mb_height*16
-
sps->mb_height = get_ue_golomb(&h->gb) + 1;
-
//检查一下
-
if ((unsigned)sps->mb_width >= INT_MAX / 16 ||
-
(unsigned)sps->mb_height >= INT_MAX / 16 ||
-
av_image_check_size(16 * sps->mb_width,
-
16 * sps->mb_height, 0, h->avctx)) {
-
av_log(h->avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
-
goto fail;
-
}
-
-
sps->frame_mbs_only_flag = get_bits1(&h->gb);
-
if (!sps->frame_mbs_only_flag)
-
sps->mb_aff = get_bits1(&h->gb);
-
else
-
sps->mb_aff = 0;
-
-
sps->direct_8x8_inference_flag = get_bits1(&h->gb);
-
-
#ifndef ALLOW_INTERLACE
-
if (sps->mb_aff)
-
av_log(h->avctx, AV_LOG_ERROR,
-
"MBAFF support not included; enable it at compile-time.\n");
-
#endif
-
//裁剪输出,没研究过
-
sps->crop = get_bits1(&h->gb);
-
if (sps->crop) {
-
int crop_left = get_ue_golomb(&h->gb);
-
int crop_right = get_ue_golomb(&h->gb);
-
int crop_top = get_ue_golomb(&h->gb);
-
int crop_bottom = get_ue_golomb(&h->gb);
-
int width = 16 * sps->mb_width;
-
int height = 16 * sps->mb_height * (2 - sps->frame_mbs_only_flag);
-
-
if (h->avctx->flags2 & CODEC_FLAG2_IGNORE_CROP) {
-
av_log(h->avctx, AV_LOG_DEBUG, "discarding sps cropping, original "
-
"values are l:%d r:%d t:%d b:%d\n",
-
crop_left, crop_right, crop_top, crop_bottom);
-
-
sps->crop_left =
-
sps->crop_right =
-
sps->crop_top =
-
sps->crop_bottom = 0;
-
} else {
-
int vsub = (sps->chroma_format_idc == 1) ? 1 : 0;
-
int hsub = (sps->chroma_format_idc == 1 ||
-
sps->chroma_format_idc == 2) ? 1 : 0;
-
int step_x = 1 << hsub;
-
int step_y = (2 - sps->frame_mbs_only_flag) << vsub;
-
-
if (crop_left & (0x1F >> (sps->bit_depth_luma > 8)) &&
-
!(h->avctx->flags & CODEC_FLAG_UNALIGNED)) {
-
crop_left &= ~(0x1F >> (sps->bit_depth_luma > 8));
-
av_log(h->avctx, AV_LOG_WARNING,
-
"Reducing left cropping to %d "
-
"chroma samples to preserve alignment.\n",
-
crop_left);
-
}
-
-
if (crop_left > (unsigned)INT_MAX / 4 / step_x ||
-
crop_right > (unsigned)INT_MAX / 4 / step_x ||
-
crop_top > (unsigned)INT_MAX / 4 / step_y ||
-
crop_bottom> (unsigned)INT_MAX / 4 / step_y ||
-
(crop_left + crop_right ) * step_x >= width ||
-
(crop_top + crop_bottom) * step_y >= height
-
) {
-
av_log(h->avctx, AV_LOG_ERROR, "crop values invalid %d %d %d %d / %d %d\n", crop_left, crop_right, crop_top, crop_bottom, width, height);
-
goto fail;
-
}
-
-
sps->crop_left = crop_left * step_x;
-
sps->crop_right = crop_right * step_x;
-
sps->crop_top = crop_top * step_y;
-
sps->crop_bottom = crop_bottom * step_y;
-
}
-
} else {
-
sps->crop_left =
-
sps->crop_right =
-
sps->crop_top =
-
sps->crop_bottom =
-
sps->crop = 0;
-
}
-
-
sps->vui_parameters_present_flag = get_bits1(&h->gb);
-
if (sps->vui_parameters_present_flag) {
-
int ret = decode_vui_parameters(h, sps);
-
if (ret < 0)
-
goto fail;
-
}
-
-
if (!sps->sar.den)
-
sps->sar.den = 1;
-
//Debug的时候可以输出一些信息
-
if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
-
static const char csp[4][5] = { "Gray", "420", "422", "444" };
-
av_log(h->avctx, AV_LOG_DEBUG,
-
"sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%u/%u/%u/%u %s %s %"PRId32"/%"PRId32" b%d reo:%d\n",
-
sps_id, sps->profile_idc, sps->level_idc,
-
sps->poc_type,
-
sps->ref_frame_count,
-
sps->mb_width, sps->mb_height,
-
sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
-
sps->direct_8x8_inference_flag ? "8B8" : "",
-
sps->crop_left, sps->crop_right,
-
sps->crop_top, sps->crop_bottom,
-
sps->vui_parameters_present_flag ? "VUI" : "",
-
csp[sps->chroma_format_idc],
-
sps->timing_info_present_flag ? sps->num_units_in_tick : 0,
-
sps->timing_info_present_flag ? sps->time_scale : 0,
-
sps->bit_depth_luma,
-
sps->bitstream_restriction_flag ? sps->num_reorder_frames : -1
-
);
-
}
-
sps->new = 1;
-
-
av_free(h->sps_buffers[sps_id]);
-
h->sps_buffers[sps_id] = sps;
-
-
return 0;
-
-
fail:
-
av_free(sps);
-
return -1;
-
}
解析SPS源代码并不是很有"技术含量"。只要参考ITU-T的《H.264标准》就可以理解了,不再做过多详细的分析。
ff_h264_decode_picture_parameter_set()
ff_h264_decode_picture_parameter_set()用于解析H.264码流中的PPS。该函数的定义位于libavcodec\h264_ps.c,如下所示。
[cpp] view plain copy
-
//解码PPS
-
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length)
-
{
-
//获取PPS ID
-
unsigned int pps_id = get_ue_golomb(&h->gb);
-
PPS *pps;
-
SPS *sps;
-
int qp_bd_offset;
-
int bits_left;
-
-
if (pps_id >= MAX_PPS_COUNT) {
-
av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", pps_id);
-
return AVERROR_INVALIDDATA;
-
}
-
//解析后赋值给PPS这个结构体
-
pps = av_mallocz(sizeof(PPS));
-
if (!pps)
-
return AVERROR(ENOMEM);
-
//该PPS引用的SPS的ID
-
pps->sps_id = get_ue_golomb_31(&h->gb);
-
if ((unsigned)pps->sps_id >= MAX_SPS_COUNT ||
-
!h->sps_buffers[pps->sps_id]) {
-
av_log(h->avctx, AV_LOG_ERROR, "sps_id %u out of range\n", pps->sps_id);
-
goto fail;
-
}
-
sps = h->sps_buffers[pps->sps_id];
-
qp_bd_offset = 6 * (sps->bit_depth_luma - 8);
-
if (sps->bit_depth_luma > 14) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"Invalid luma bit depth=%d\n",
-
sps->bit_depth_luma);
-
goto fail;
-
} else if (sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"Unimplemented luma bit depth=%d\n",
-
sps->bit_depth_luma);
-
goto fail;
-
}
-
//entropy_coding_mode_flag
-
//0表示熵编码使用CAVLC,1表示熵编码使用CABAC
-
pps->cabac = get_bits1(&h->gb);
-
pps->pic_order_present = get_bits1(&h->gb);
-
pps->slice_group_count = get_ue_golomb(&h->gb) + 1;
-
if (pps->slice_group_count > 1) {
-
pps->mb_slice_group_map_type = get_ue_golomb(&h->gb);
-
av_log(h->avctx, AV_LOG_ERROR, "FMO not supported\n");
-
switch (pps->mb_slice_group_map_type) {
-
case 0:
-
#if 0
-
| for (i = 0; i <= num_slice_groups_minus1; i++) | | |
-
| run_length[i] |1 |ue(v) |
-
#endif
-
break;
-
case 2:
-
#if 0
-
| for (i = 0; i < num_slice_groups_minus1; i++) { | | |
-
| top_left_mb[i] |1 |ue(v) |
-
| bottom_right_mb[i] |1 |ue(v) |
-
| } | | |
-
#endif
-
break;
-
case 3:
-
case 4:
-
case 5:
-
#if 0
-
| slice_group_change_direction_flag |1 |u(1) |
-
| slice_group_change_rate_minus1 |1 |ue(v) |
-
#endif
-
break;
-
case 6:
-
#if 0
-
| slice_group_id_cnt_minus1 |1 |ue(v) |
-
| for (i = 0; i <= slice_group_id_cnt_minus1; i++)| | |
-
| slice_group_id[i] |1 |u(v) |
-
#endif
-
break;
-
}
-
}
-
//num_ref_idx_l0_active_minus1 加1后指明目前参考帧队列的长度,即有多少个参考帧
-
//读者可能还记得在SPS中有句法元素num_ref_frames 也是跟参考帧队列有关,它们的区
-
//别是num_ref_frames 指明参考帧队列的最大值, 解码器用它的值来分配内存空间;
-
//num_ref_idx_l0_active_minus1 指明在这个队列中当前实际的、已存在的参考帧数目,这从它的名字
-
//"active"中也可以看出来。
-
pps->ref_count[0] = get_ue_golomb(&h->gb) + 1;
-
pps->ref_count[1] = get_ue_golomb(&h->gb) + 1;
-
if (pps->ref_count[0] - 1 > 32 - 1 || pps->ref_count[1] - 1 > 32 - 1) {
-
av_log(h->avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
-
goto fail;
-
}
-
//P Slice 是否使用加权预测?
-
pps->weighted_pred = get_bits1(&h->gb);
-
//B Slice 是否使用加权预测?
-
pps->weighted_bipred_idc = get_bits(&h->gb, 2);
-
//QP初始值。读取后需要加26
-
pps->init_qp = get_se_golomb(&h->gb) + 26 + qp_bd_offset;
-
//SP和SI的QP初始值(没怎么见过这两种帧)
-
pps->init_qs = get_se_golomb(&h->gb) + 26 + qp_bd_offset;
-
pps->chroma_qp_index_offset[0] = get_se_golomb(&h->gb);
-
pps->deblocking_filter_parameters_present = get_bits1(&h->gb);
-
pps->constrained_intra_pred = get_bits1(&h->gb);
-
pps->redundant_pic_cnt_present = get_bits1(&h->gb);
-
-
pps->transform_8x8_mode = 0;
-
// contents of sps/pps can change even if id doesn't, so reinit
-
h->dequant_coeff_pps = -1;
-
memcpy(pps->scaling_matrix4, h->sps_buffers[pps->sps_id]->scaling_matrix4,
-
sizeof(pps->scaling_matrix4));
-
memcpy(pps->scaling_matrix8, h->sps_buffers[pps->sps_id]->scaling_matrix8,
-
sizeof(pps->scaling_matrix8));
-
-
bits_left = bit_length - get_bits_count(&h->gb);
-
if (bits_left > 0 && more_rbsp_data_in_pps(h, pps)) {
-
pps->transform_8x8_mode = get_bits1(&h->gb);
-
decode_scaling_matrices(h, h->sps_buffers[pps->sps_id], pps, 0,
-
pps->scaling_matrix4, pps->scaling_matrix8);
-
// second_chroma_qp_index_offset
-
pps->chroma_qp_index_offset[1] = get_se_golomb(&h->gb);
-
} else {
-
pps->chroma_qp_index_offset[1] = pps->chroma_qp_index_offset[0];
-
}
-
-
build_qp_table(pps, 0, pps->chroma_qp_index_offset[0], sps->bit_depth_luma);
-
build_qp_table(pps, 1, pps->chroma_qp_index_offset[1], sps->bit_depth_luma);
-
if (pps->chroma_qp_index_offset[0] != pps->chroma_qp_index_offset[1])
-
pps->chroma_qp_diff = 1;
-
-
if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
-
av_log(h->avctx, AV_LOG_DEBUG,
-
"pps:%u sps:%u %s slice_groups:%d ref:%u/%u %s qp:%d/%d/%d/%d %s %s %s %s\n",
-
pps_id, pps->sps_id,
-
pps->cabac ? "CABAC" : "CAVLC",
-
pps->slice_group_count,
-
pps->ref_count[0], pps->ref_count[1],
-
pps->weighted_pred ? "weighted" : "",
-
pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset[0], pps->chroma_qp_index_offset[1],
-
pps->deblocking_filter_parameters_present ? "LPAR" : "",
-
pps->constrained_intra_pred ? "CONSTR" : "",
-
pps->redundant_pic_cnt_present ? "REDU" : "",
-
pps->transform_8x8_mode ? "8x8DCT" : "");
-
}
-
-
av_free(h->pps_buffers[pps_id]);
-
h->pps_buffers[pps_id] = pps;
-
return 0;
-
-
fail:
-
av_free(pps);
-
return -1;
-
}
和解析SPS类似,解析PPS源代码并不是很有"技术含量"。只要参考ITU-T的《H.264标准》就可以理解,不再做过多详细的分析。
ff_h264_decode_sei()用于解析H.264码流中的SEI。该函数的定义位于libavcodec\h264_sei.c,如下所示。
[cpp] view plain copy
-
//SEI补充增强信息单元
-
int ff_h264_decode_sei(H264Context *h)
-
{
-
while (get_bits_left(&h->gb) > 16 && show_bits(&h->gb, 16)) {
-
int type = 0;
-
unsigned size = 0;
-
unsigned next;
-
int ret = 0;
-
-
do {
-
if (get_bits_left(&h->gb) < 8)
-
return AVERROR_INVALIDDATA;
-
type += show_bits(&h->gb, 8);
-
} while (get_bits(&h->gb, 8) == 255);
-
-
do {
-
if (get_bits_left(&h->gb) < 8)
-
return AVERROR_INVALIDDATA;
-
size += show_bits(&h->gb, 8);
-
} while (get_bits(&h->gb, 8) == 255);
-
-
if (h->avctx->debug&FF_DEBUG_STARTCODE)
-
av_log(h->avctx, AV_LOG_DEBUG, "SEI %d len:%d\n", type, size);
-
-
if (size > get_bits_left(&h->gb) / 8) {
-
av_log(h->avctx, AV_LOG_ERROR, "SEI type %d size %d truncated at %d\n",
-
type, 8*size, get_bits_left(&h->gb));
-
return AVERROR_INVALIDDATA;
-
}
-
next = get_bits_count(&h->gb) + 8 * size;
-
-
switch (type) {
-
case SEI_TYPE_PIC_TIMING: // Picture timing SEI
-
ret = decode_picture_timing(h);
-
if (ret < 0)
-
return ret;
-
break;
-
case SEI_TYPE_USER_DATA_ITU_T_T35:
-
if (decode_user_data_itu_t_t35(h, size) < 0)
-
return -1;
-
break;
-
//x264的编码参数信息一般都会存储在USER_DATA_UNREGISTERED
-
//其他种类的SEI见得很少
-
case SEI_TYPE_USER_DATA_UNREGISTERED:
-
ret = decode_unregistered_user_data(h, size);
-
if (ret < 0)
-
return ret;
-
break;
-
case SEI_TYPE_RECOVERY_POINT:
-
ret = decode_recovery_point(h);
-
if (ret < 0)
-
return ret;
-
break;
-
case SEI_TYPE_BUFFERING_PERIOD:
-
ret = decode_buffering_period(h);
-
if (ret < 0)
-
return ret;
-
break;
-
case SEI_TYPE_FRAME_PACKING:
-
ret = decode_frame_packing_arrangement(h);
-
if (ret < 0)
-
return ret;
-
break;
-
case SEI_TYPE_DISPLAY_ORIENTATION:
-
ret = decode_display_orientation(h);
-
if (ret < 0)
-
return ret;
-
break;
-
default:
-
av_log(h->avctx, AV_LOG_DEBUG, "unknown SEI type %d\n", type);
-
}
-
skip_bits_long(&h->gb, next - get_bits_count(&h->gb));
-
-
// FIXME check bits here
-
align_get_bits(&h->gb);
-
}
-
-
return 0;
-
}
在《H.264官方标准》中,SEI的种类是非常多的。在ff_h264_decode_sei()中包含以下种类的SEI:
SEI_TYPE_BUFFERING_PERIOD
SEI_TYPE_PIC_TIMING
SEI_TYPE_USER_DATA_ITU_T_T35
SEI_TYPE_USER_DATA_UNREGISTERED
SEI_TYPE_RECOVERY_POINT
SEI_TYPE_FRAME_PACKING
SEI_TYPE_DISPLAY_ORIENTATION
其中的大部分种类的SEI信息我并没有接触过。唯一接触比较多的就是SEI_TYPE_USER_DATA_UNREGISTERED类型的信息了。使用X264编码视频的时候,会自动将配置信息以SEI_TYPE_USER_DATA_UNREGISTERED(用户数据未注册SEI)的形式写入码流。
从ff_h264_decode_sei()的定义可以看出,该函数根据不同的SEI类型调用不同的解析函数。当SEI类型为SEI_TYPE_USER_DATA_UNREGISTERED的时候,就会调用decode_unregistered_user_data()函数。
decode_unregistered_user_data()
decode_unregistered_user_data()的定义如下所示。从代码可以看出该函数只是简单的提取了X264的版本信息。
[cpp] view plain copy
-
//x264的编码参数信息一般都会存储在USER_DATA_UNREGISTERED
-
static int decode_unregistered_user_data(H264Context *h, int size)
-
{
-
uint8_t user_data[16 + 256];
-
int e, build, i;
-
-
if (size < 16)
-
return AVERROR_INVALIDDATA;
-
-
for (i = 0; i < sizeof(user_data) - 1 && i < size; i++)
-
user_data[i] = get_bits(&h->gb, 8);
-
//user_data内容示例:x264 core 118
-
//int sscanf(const char *buffer,const char *format,[argument ]...);
-
//sscanf会从buffer里读进数据,依照format的格式将数据写入到argument里。
-
user_data[i] = 0;
-
e = sscanf(user_data + 16, "x264 - core %d", &build);
-
if (e == 1 && build > 0)
-
h->x264_build = build;
-
if (e == 1 && build == 1 && !strncmp(user_data+16, "x264 - core 0000", 16))
-
h->x264_build = 67;
-
-
if (h->avctx->debug & FF_DEBUG_BUGS)
-
av_log(h->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data + 16);
-
-
for (; i < size; i++)
-
skip_bits(&h->gb, 8);
-
-
return 0;
-
}
解析Slice Header
对于包含图像压缩编码的Slice,解析器(Parser)并不进行解码处理,而是简单提取一些Slice Header中的信息。该部分的代码并没有写成一个函数,而是直接写到了parse_nal_units()里面,截取出来如下所示。
[cpp] view plain copy
-
case NAL_IDR_SLICE:
-
//如果是IDR Slice
-
//赋值AVCodecParserContext的key_frame为1
-
s->key_frame = 1;
-
-
h->prev_frame_num = 0;
-
h->prev_frame_num_offset = 0;
-
h->prev_poc_msb =
-
h->prev_poc_lsb = 0;
-
/* fall through */
-
case NAL_SLICE:
-
//获取Slice的一些信息
-
//跳过first_mb_in_slice这一字段
-
get_ue_golomb_long(&h->gb); // skip first_mb_in_slice
-
//获取帧类型(I,B,P)
-
slice_type = get_ue_golomb_31(&h->gb);
-
//赋值到AVCodecParserContext的pict_type(外部可以访问到)
-
s->pict_type = golomb_to_pict_type[slice_type % 5];
-
//关键帧
-
if (h->sei_recovery_frame_cnt >= 0) {
-
/* key frame, since recovery_frame_cnt is set */
-
//赋值AVCodecParserContext的key_frame为1
-
s->key_frame = 1;
-
}
-
//获取 PPS ID
-
pps_id = get_ue_golomb(&h->gb);
-
if (pps_id >= MAX_PPS_COUNT) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"pps_id %u out of range\n", pps_id);
-
return -1;
-
}
-
if (!h->pps_buffers[pps_id]) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"non-existing PPS %u referenced\n", pps_id);
-
return -1;
-
}
-
h->pps = *h->pps_buffers[pps_id];
-
if (!h->sps_buffers[h->pps.sps_id]) {
-
av_log(h->avctx, AV_LOG_ERROR,
-
"non-existing SPS %u referenced\n", h->pps.sps_id);
-
return -1;
-
}
-
h->sps = *h->sps_buffers[h->pps.sps_id];
-
h->frame_num = get_bits(&h->gb, h->sps.log2_max_frame_num);
-
-
if(h->sps.ref_frame_count <= 1 && h->pps.ref_count[0] <= 1 && s->pict_type == AV_PICTURE_TYPE_I)
-
s->key_frame = 1;
-
//获得"型"和"级"
-
//赋值到AVCodecContext的profile和level
-
avctx->profile = ff_h264_get_profile(&h->sps);
-
avctx->level = h->sps.level_idc;
-
-
if (h->sps.frame_mbs_only_flag) {
-
h->picture_structure = PICT_FRAME;
-
} else {
-
if (get_bits1(&h->gb)) { // field_pic_flag
-
h->picture_structure = PICT_TOP_FIELD + get_bits1(&h->gb); // bottom_field_flag
-
} else {
-
h->picture_structure = PICT_FRAME;
-
}
-
}
-
-
if (h->nal_unit_type == NAL_IDR_SLICE)
-
get_ue_golomb(&h->gb); /* idr_pic_id */
-
if (h->sps.poc_type == 0) {
-
h->poc_lsb = get_bits(&h->gb, h->sps.log2_max_poc_lsb);
-
-
if (h->pps.pic_order_present == 1 &&
-
h->picture_structure == PICT_FRAME)
-
h->delta_poc_bottom = get_se_golomb(&h->gb);
-
}
-
-
if (h->sps.poc_type == 1 &&
-
!h->sps.delta_pic_order_always_zero_flag) {
-
h->delta_poc[0] = get_se_golomb(&h->gb);
-
-
if (h->pps.pic_order_present == 1 &&
-
h->picture_structure == PICT_FRAME)
-
h->delta_poc[1] = get_se_golomb(&h->gb);
-
}
-
-
/* Decode POC of this picture.
-
* The prev_ values needed for decoding POC of the next picture are not set here. */
-
field_poc[0] = field_poc[1] = INT_MAX;
-
ff_init_poc(h, field_poc, &s->output_picture_number);
-
-
/* Continue parsing to check if MMCO_RESET is present.
-
* FIXME: MMCO_RESET could appear in non-first slice.
-
* Maybe, we should parse all undisposable non-IDR slice of this
-
* picture until encountering MMCO_RESET in a slice of it. */
-
if (h->nal_ref_idc && h->nal_unit_type != NAL_IDR_SLICE) {
-
got_reset = scan_mmco_reset(s);
-
if (got_reset < 0)
-
return got_reset;
-
}
-
-
/* Set up the prev_ values for decoding POC of the next picture. */
-
h->prev_frame_num = got_reset ? 0 : h->frame_num;
-
h->prev_frame_num_offset = got_reset ? 0 : h->frame_num_offset;
-
if (h->nal_ref_idc != 0) {
-
if (!got_reset) {
-
h->prev_poc_msb = h->poc_msb;
-
h->prev_poc_lsb = h->poc_lsb;
-
} else {
-
h->prev_poc_msb = 0;
-
h->prev_poc_lsb =
-
h->picture_structure == PICT_BOTTOM_FIELD ? 0 : field_poc[0];
-
}
-
}
可以看出该部分代码提取了根据NALU Header、Slice
Header中的信息赋值了一些字段,比如说AVCodecParserContext中的key_frame、pict_type,H264Context中的sps、pps、frame_num等等。