自然语言处理——n元元组

假设:一个文档的分词w1w_1,w2w_2,w3w_3,…,wnw_n.

unigram(一元元组):

句子中每个分词都是独立的.将每个分词的概率直接相乘即可.
p(w)=p(w1)p(w2)p(w3)...p(wn) p\left( w \right) =p\left( w_1 \right) *p\left( w_2 \right) *p\left( w_3 \right) ...*p\left( w_n \right)

     =i=1np(wi) \ \ \ \ \ =\prod_{i=1}^n{p\left( w_i \right)}

bigram(二元元组):

基于 markov assumption ,考虑句子中前一个分词出现情况下的概率.
p(w)=p(w1)p(w2w1)p(w3w2)...p(wnwn1) p\left( w \right) =p\left( w_1 \right) *p\left( w_2|w_1 \right) *p\left( w_3|w_2 \right) ...*p\left( w_n|w_{n-1} \right)

     =p(w1)i=2np(wiwi1) \ \ \ \ \ =p\left( w_1 \right) *\prod_{i=2}^n{p\left( w_i|w_{i-1} \right)}

trigram(三元元组):

基于 markov assumption ,考虑句子中前两个分词出现情况下的概率.
p(w)=p(w1)p(w2w1)p(w3w2w1)...p(wnwn1wn2) p\left( w \right) =p\left( w_1 \right) *p\left( w_2|w_1 \right) *p\left( w_3|w_2w_1 \right) ...*p\left( w_n|w_{n-1}w_{n-2} \right)

     =p(w1)p(w2w1)i=3np(wiwi1wi2) \ \ \ \ \ =p\left( w_1 \right) *p\left( w_2|w_1 \right) *\prod_{i=3}^n{p\left( w_i|w_{i-1}w_{i-2} \right)}
自然语言处理——n元元组