AI论文探讨室·A+·第11期
《DeepMVS: Learning Multi-view Stereopsis》
主要解决的问题:输入任意数量的姿态图像来预测高质量的视差图
主要描述
主要包含三部分:(1)在真实统一数据集上进行有监督的预训练;(2)提出一个有效的方法在无序的图像数据集中收集信息;(3)使用预训练的VGG-19网络来融入多层的特征。通过在 ETH3D数据集上对论文中提出的DeepMVS网络,进行对比实验,表现出良好的结果,尤其在接近没有纹理和薄结构上。
系统架构
特征聚集
实验效果对比
结论