消息队列-解耦、异步、削锋

解耦

不使用MQ时

A系统发送数据到B、C、D系统,但没有使用消息队列时候的耦合场景

消息队列-解耦、异步、削锋

当后面系统不断增加,比如 E,F系统的加入,以及D系统的移除

消息队列-解耦、异步、削锋

因为A系统和其它各种系统耦合起来,那么需要处理的事情会给出多

使用MQ后

系统A发送一条消息,到消息队列中,哪个系统需要获取到哪里,那么从MQ中消费数据,如果新系统E加入的话,那么只需要编写代码,然后也直接从MQ中消费即可,当系统D不需要这个数据时,那么只需要不对该消息进行消费即可。系统A不需要考虑给谁发送数据,也不需要维护这个代码,不需要考虑人家是否调用成功、失败、超时等等情况

消息队列-解耦、异步、削锋

总结:通过一个MQ,发布和订阅模型(Pub/Sub模型),系统A就和其它系统彻底解耦。

需要考虑一下负责的系统中,是否有类似的场景,就是一个系统或者一个模块,调用了多个系统,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要同步调用接口的,如果用MQ给他异步化解耦,也是可以的,这个时候可以考虑在自己的项目中,是不是可以运用这个MQ来进行系统的解耦。

异步

不用MQ的同步高延时请求场景

下面的一个场景就是系统A,调用了其它三个系统的服务,我们发现用户在执行一个请求后,需要花费很长的时间

消息队列-解耦、异步、削锋

我们发现,用户执行一个接口,就需要花费350毫秒,假设我们将每个接口的耗时增加,可能会将近花费1秒,这个时候一般用户几乎不能接受,因为一般互联网类的企业,对用户的直接操作,一般要求是每个请求都必须在200ms以内完成,因为这个是对用户是无感知的

使用MQ进行异步化

消息队列-解耦、异步、削锋

系统A只需要发送消息到MQ中就直接返回了,然后其它系统各自在MQ中进行消费。用户在执行系统A的时候,就会感觉非常快就得到响应了。

削峰

没有用MQ的削峰

消息队列-解耦、异步、削锋

一般的MySQL,抗到QPS=2000的时候就已经达到了瓶颈,如果每秒请求达到了5000的话,可能直接就把MySQL打死了。如果MySQL被打死,然后整个系统就崩溃,然后系统就没法使用。

但是中午的高峰期过了之后,到下午的时候,就成了低峰期,可能也就一万用户同时在网站上操作,每秒的请求数量可能就50个请求,对整个系统几乎没有任何压力。

使用MQ来进行削峰

消息队列-解耦、异步、削锋

削峰就是大量的请求过来,然后MQ将其消化掉了,然后通过其它系统从MQ中取消息,在逐步进行消费,保证系统的有序运行。一般高峰期不会持续太长,在一段时间后,就会被下游系统消化掉。

 

上面已经说了:解耦、异步、削峰,缺点呢?显而易见的

  • 系统可用性降低:系统引入的外部依赖越多,越容易挂掉,本来你就是A系统调用BCD三个系统接口就好了,人家ABCD四个系统好好的,没啥问题,这个时候却加入了MQ进来,万一MQ挂了怎么办?MQ挂了整套系统也会崩溃了。
  • 系统复杂性提高:硬生生加个MQ进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?
  • 一致性问题:A系统处理完了直接返回成功了,人都以为你的请求成功了,但是问题是,要在BCD三个系统中,BD两个系统写库成功了,结果C系统写库失败了,这样就会存在数据不一致的问题。
  • 所以说消息队列实际上是一种复杂的架构,你引入它有好多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,最后发现系统复杂性提升了一个数量级,也许是复杂10倍,但是关键时刻,用还是得用。

消息队列-解耦、异步、削锋

 

主流MQ包括:kafka、ActiveMQ、RabbitMQ和RocketMQ

常见的MQ其实就上面的四种

特性 ActiveMQ RabbitMQ RocketMQ Kafka
单机吞吐量 万级,吞吐量比RocketMQ和Kafka要低一个数量级 万级,吞吐量比RocketMQ和Kafka要低一个数量级 10万级,RocketMQ也是可以支撑高吞吐的一种MQ 10万级1这是kafka最大的优点,就是吞吐量高。一般配置和数据类的系统进行实时数据计算、日志采集等场景
时效性 ms级 微妙级,这是RabbitMQ的一大特点,就是延迟最低 ms级 延迟在ms级内
可用性 基于主从架构实现高可用 高,基于主从架构实现高可用 非常高,分布式架构 非常高,kafka是分布式的,一个数据多个副本,少数机器宕机后,不会丢失数据,不会导致不可用
消息可靠性 有较低的概率丢失数据 消息不丢失 经过参数优化配置,可以做到0丢失 经过参数优化配置可以做到0丢失
核心特点 MQ领域的功能及其完备 基于Erlang开发,所以并发能力强,性能及其好,延时很低 MQ功能较为完善,还是分布式的,扩展性好 功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是实时上的标准。
  非常成熟,功能强大,在业内大量公司以及项目都有应用。 但是偶尔消息丢失的概率,并且现在社区以及国内应用都越来越少,官方社区对ActiveMQ5.X维护越来越少,而且确实主要是基于解耦和异步来用的,较少在大规模吞吐场景中使用 erlang语言开发的,性能及其好,延时很低。而且开源的版本,就提供的管理界面非常棒,在国内一些互联网公司近几年用RabbitMQ也是比较多一些,特别适用于中小型的公司 缺点显而易见,就是吞吐量会低一些,这是因为它做的实现机制比较中,因为使用erlang开发,目前没有多少公司使用其开发。所以针对源码界别的定制,非常困难,因此公司的掌控非常弱,只能依赖于开源社区的维护。 接口简单易用,毕竟在阿里大规模应用过,有阿里平台保障,日处理消息上 百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是OK的,还可以支撑大规模的topic数量,支持复杂MQ业务场景。 仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级别的延迟,极高的可用性以及可靠性,分布式可以任意扩展。 同时kafka最好是支撑较少的topic数量即可,保证其超高的吞吐量。

综上所述:

  • 一般的业务要引入MQ,最早大家都是用ACviceMQ,但是现在大家用的不多了,没有经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了,不太图鉴使用
  • RabbitMQ后面被大量的中小型公司所使用,但是erlang语言阻碍了大量的Java工程师深入研究和掌握它,对公司而言,几乎处于不可控的状态,但是RabbitMQ目前开源稳定,活跃度也表较高。
  • RocketMQ是阿里开源的一套消息中间件,目前也已经经历了天猫双十一,同时底层使用Java进行开发

如果中小型企业技术实力一般,技术挑战不是很高,可以推荐,RabbitMQ。

如果公司的基础研发能力很强,想精确到源码级别的掌握,那么推荐使用RocketMQ。

同时如果项目是聚焦于大数据领域的实时计算,日志采集等场景,那么Kafka是业内标准