表情识别(五)--MBP+CNN
EmotiW 2015 LBP特征输入到CNN模型中,并经过特殊映射,得到高于基线15%的性能提升。
作者采用了:
- 4个cnn模型VGG S,VGG M-2048,VGG M-4096和GoogleNet
- 5种不同特征作为CNN输入 (RGB, LBP,以及作者额外三种处理的LBP特征)
- 进行了20次实验。实验中10个最好的model中只有一个是RGB作为输入的。
由于LBP的差值不能反映两点间的差异,作者提出了mapping方法让其差异能代表两点真实差距。 将图像转换为LBP代码,使模型对照明亮度变化具有鲁棒性。如下图:
LBP特征不再多数,作者所谓的映射,是采用MDS,多维度压缩方法,将LBP特征值,映射到一个测地空间,MDS就是一种监督类维度归约方法。
另外,作者同样采用了中心 crop,上采样等数据增强方式,提高精度。
给个结果:
说实话,效果不是很好,毕竟,只是对单一特征的处理,改变提升不大。