【论文系列研读】Superpixel: SLIC+SNN

1SLICPAMI2012

TitleSLIC Superpixels Compared to State-of-the-art Superpixel Methods

AuthorRadhakrishna Achanta ... (École Polytechnique Fédérale de Lausanne,EPFL 瑞士联邦理工学院)

 

Other Algorithms for generating superpixels

1.Graph-based algorithms

  • treat each pixel as a node
  • Edge weights are similarity between neighboring pixels.
  • bipartite graph
  • finding optimal paths

2.Gradient-ascent-based algorithms

 

算法:

【论文系列研读】Superpixel: SLIC+SNN

【论文系列研读】Superpixel: SLIC+SNN

 

Advantages

  • Fastest
  • most memory efficient

 

结果

1. 自然图像

【论文系列研读】Superpixel: SLIC+SNN

2. 2D and 3D EM images

【论文系列研读】Superpixel: SLIC+SNN

 

2Superpixel Sampling Networks(ECCV2018)

TitleSuperpixel Sampling Networks

AuthorVarun Jampani ... (NVIDIA)

 

 

Why is SLIC not differentiable?

  • a non-differentiable nearest neighbor operation
  • Associate each pixel to the nearest superpixel center

【论文系列研读】Superpixel: SLIC+SNN

Advantages:

soft-associations

  1. the first end-to-end trainable superpixel algorithm
  2. convert the nearest-neighbor operation into differentiable
  3. learning with flexible loss functions

 

算法

【论文系列研读】Superpixel: SLIC+SNN

【论文系列研读】Superpixel: SLIC+SNN

  • m:superpixel个数
  • QF=weighted sum of pixel features,距离为权值,对特征加权
  • Optional:求每个superpixel内的最大距离值,最小化这个值
  • column normalized Qt as Qˆt

Loss function

【论文系列研读】Superpixel: SLIC+SNN

           segmentation tasks: cross-entropy loss

           optical flow L1-norm

【论文系列研读】Superpixel: SLIC+SNN

           compactness loss lower spatial variance

【论文系列研读】Superpixel: SLIC+SNN

 

结果:

【论文系列研读】Superpixel: SLIC+SNN

【论文系列研读】Superpixel: SLIC+SNN