【新闻】亚马逊人脸识别技术Rekognition被爆种族歧视
与IBM、微软的同类技术相比,亚马逊的人脸分析软件分辨某些人种性别的正确率较低。这是麻省理工学院(MIT)研究人员在近日发表的一项新研究中得出的结论,该研究发现,在特定情况下,Rekognition(亚马逊图像识别技术)无法可靠地辨别女性和深肤色人群。
该项研究的合著者称,在2018年进行的实验中,Rekognition错误地将19%的女性图像识别为男性,将31%的深肤色女性图像识别为男性。相比之下,微软在识别深色皮肤人群性别时,将女性错认为男性的比例只有1.5%。
亚马逊对这项研究提出质疑。它表示,Rekognition升级版的内测结果显示,该技术对于识别性别的正确率不存在人种差异。此外,亚马逊认为这篇论文没有清楚地说明在实验中使用的置信度阈值,即Rekognition的判断被认为是正确而必须达到的最低精确度。
在给外媒的一份声明中,亚马逊云服务平台深度学习和人工智能总经理马特·伍德博士(Matt Wood)对面部分析和面部识别这两个概念进行了区分:面部分析指的是在视频或图像中辨认出脸部,并确定其一般属性;而面部识别是将单个人脸与其它视像中的人脸相匹配。他说,根据“面部分析”的结果来判断“面部识别”的准确性是“不可行的”,而且他认为这篇论文所谈论的和“客户如何使用Rekognition”是两回事。
长按二维码,关注我们
新睿云,让云服务触手可及
云主机|云存储|云数据库|云网络
点击“阅读原文”参与活动