论文解读 Saliency Weighted Convolutional Features for Instance Search

论文解读 Saliency Weighted Convolutional Features for Instance Search


Saliency Weighted Convolutional Features for Instance Search,E Mohedano,K Mcguinness,X Giroinieto,arXiv.org


1 Contribution

  • 1 We propose a novel approach to instance search combining saliency weighting over off-the-shelf convolutional features which are aggregated using a large vocabulary with a bag of words model.

  • 2 We demonstrate that this weighting scheme gives outperforms all other state of the art on the challenging INSTRE benchmark.

  • 3 higher performance on saliency benchmarks does not necessary equate to improved performance when used in the instance search task

    我对这篇的理解其实主要是利用显著性检测给BLCV过程赋一个权重,类似于文件检索里BOW中的tf-idf权重机制。


2 Pipeline


论文解读 Saliency Weighted Convolutional Features for Instance Search

    在上图中,Smantic feature相当于BLCV的过程,详情查看上一篇博文。Saliency 相当于一个显著性检测网络,可以得到一张图片的显著性结果图,然后利用显著性结果图给BLCV过程中的到的Assignment map赋予权值,然后再统计词频生成最终的特征描述。


3 Saliency model


论文解读 Saliency Weighted Convolutional Features for Instance Search
此图介绍了不同显著性检测model在MIT300的检测效果


论文解读 Saliency Weighted Convolutional Features for Instance Search
此图可视化了显著性检测model的结果


4 Experiments

  • 1 Aggregation methods


    论文解读 Saliency Weighted Convolutional Features for Instance Search

  • 2 Comparison with the state-of-the-art


    论文解读 Saliency Weighted Convolutional Features for Instance Search
    不加查询扩展的实验对比结果

    论文解读 Saliency Weighted Convolutional Features for Instance Search
    加了查询扩展的实验对比结果

  • 3 结果展示


    论文解读 Saliency Weighted Convolutional Features for Instance Search