机器学习之逻辑回归--01
一、逻辑回归基本概念
1. 什么是逻辑回归
逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。
Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别)
回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率
2. 逻辑回归的优缺点
优点:
1)速度快,适合二分类问题
2)简单易于理解,直接看到各个特征的权重
3)能容易地更新模型吸收新的数据
缺点:
对数据和场景的适应能力有局限性,不如决策树算法适应性那么强
3. 逻辑回归和多重线性回归的区别
Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalizedlinear model)。
这一家族中的模型形式基本上都差不多,不同的就是因变量不同。这一家族中的模型形式基本上都差不多,不同的就是因变量不同。
- 如果是连续的,就是多重线性回归
- 如果是二项分布,就是Logistic回归
- 如果是Poisson分布,就是Poisson回归
- 如果是负二项分布,就是负二项回归
4. 逻辑回归用途
- 寻找危险因素:寻找某一疾病的危险因素等;
- 预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;
- 判别:实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。
5. Regression 常规步骤
- 寻找h函数(即预测函数)
- 构造J函数(损失函数)
- 想办法使得J函数最小并求得回归参数(θ)
6. 构造预测函数h(x)
1) Logistic函数(或称为Sigmoid函数),函数形式为:
对于线性边界的情况,边界形式如下:
其中,训练数据为向量
最佳参数
构造预测函数为:
函数h(x)的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:
P(y=1│x;θ)=h_θ (x)
P(y=0│x;θ)=1-h_θ (x)
7.构造损失函数J(m个样本,每个样本具有n个特征)
Cost函数和J函数如下,它们是基于最大似然估计推导得到的。
8. 损失函数详细推导过程
1) 求代价函数
概率综合起来写成:
取似然函数为:
对数似然函数为:
最大似然估计就是求使l(θ)取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。
在Andrew Ng的课程中将J(θ)取为下式,即:
2) 梯度下降法求解最小值
θ更新过程可以写成:
9. 向量化
ectorization是使用矩阵计算来代替for循环,以简化计算过程,提高效率。
向量化过程:
约定训练数据的矩阵形式如下,x的每一行为一条训练样本,而每一列为不同的特称取值:
g(A)的参数A为一列向量,所以实现g函数时要支持列向量作为参数,并返回列向量。
θ更新过程可以改为:
综上所述,Vectorization后θ更新的步骤如下:
- 求 A=x*θ
- 求 E=g(A)-y
- 求
10.正则化
(1) 过拟合问题
过拟合即是过分拟合了训练数据,使得模型的复杂度提高,繁华能力较差(对未知数据的预测能力)
下面左图即为欠拟合,中图为合适的拟合,右图为过拟合。
(2)过拟合主要原因
过拟合问题往往源自过多的特征
解决方法
1)减少特征数量(减少特征会失去一些信息,即使特征选的很好)
• 可用人工选择要保留的特征;
• 模型选择算法;
2)正则化(特征较多时比较有效)
• 保留所有特征,但减少θ的大小
(3)正则化方法
正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项或惩罚项。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化项就越大。
正则项可以取不同的形式,在回归问题中取平方损失,就是参数的L2范数,也可以取L1范数。取平方损失时,模型的损失函数变为:
lambda是正则项系数:
• 如果它的值很大,说明对模型的复杂度惩罚大,对拟合数据的损失惩罚小,这样它就不会过分拟合数据,在训练数据上的偏差较大,在未知数据上的方差较小,但是可能出现欠拟合的现象;
• 如果它的值很小,说明比较注重对训练数据的拟合,在训练数据上的偏差会小,但是可能会导致过拟合。
正则化后的梯度下降算法θ的更新变为:
''' Created on Oct 27, 2010 Logistic Regression Working Module @author: Peter ''' from numpy import * import matplotlib.pyplot as plt def loadDataSet(): dataMat = []; labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() #print(lineArr) dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) labelMat.append(int(lineArr[2])) return dataMat,labelMat def sigmoid(inX): return 1.0/(1+exp(-inX)) #迭代权重 def gradAscent(dataMatIn, classLabels): dataMatrix = mat(dataMatIn) #convert to NumPy matrix 转化为矩阵 labelMat = mat(classLabels).transpose() #convert to NumPy matrix 矩阵的转置 m,n = shape(dataMatrix) #获取行数 列数 #print(m,n) alpha = 0.001 #迭代次数 maxCycles = 500 #初始化权重 weights = ones((n,1)) #print(weights) #对权重进行训练 for k in range(maxCycles): #heavy on matrix operations h = sigmoid(dataMatrix*weights) #matrix mult error = (labelMat - h) #vector subtraction weights = weights + alpha * dataMatrix.transpose()* error #matrix mult return weights #画出不决策边界 def plotBestFit(weights): #weights是 import matplotlib.pyplot as plt dataMat,labelMat=loadDataSet() dataArr = array(dataMat) n = shape(dataArr)[0] #print(n) xcord1 = []; ycord1 = [] xcord2 = []; ycord2 = [] for i in range(n): if int(labelMat[i])== 1: xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2]) else: xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c='red', marker='s') ax.scatter(xcord2, ycord2, s=30, c='green') x = arange(-3.0, 3.0, 0.1) ''' weight[0]*1 + weight[0]*x_1 + weight[2]*x_2 = 0 x_2 = (-weights[0]-weights[1]*x)/weights[2] ''' y = (-weights[0]-weights[1]*x)/weights[2] #print(type(x)) #print(type(y)) ax.plot(x, y) plt.xlabel('X1'); plt.ylabel('X2'); plt.show() #随机梯度上升算法 def stocGradAscent0(dataMatrix, classLabels): m,n = shape(dataMatrix) alpha = 0.01 weights = ones(n) #initialize to all ones for i in range(m): h = sigmoid(sum(dataMatrix[i]*weights)) error = classLabels[i] - h weights = weights + alpha * error * dataMatrix[i] return weights ''' if __name__ == '__main__': dataArr,labelMat = loadDataSet() #weights = gradAscent(dataArr,labelMat) weights = stocGradAscent0(array(dataArr), labelMat) print(weights) #print('1111111111111111') #plotBestFit(weights.getA()) #dataArr = array(dataArr) #print(dataArr[:,0]) #plt.scatter(dataArr[:,1], dataArr[:,2]) #print(dataArr) #plt.show() ''' #改进梯度上升算法 def stocGradAscent1(dataMatrix, classLabels, numIter=150): m,n = shape(dataMatrix) weights = ones(n) #initialize to all ones for j in range(numIter): dataIndex = list(range(m)) for i in range(m): alpha = 4/(1.0+j+i)+0.0001 #apha decreases with iteration, does not randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant h = sigmoid(sum(dataMatrix[randIndex]*weights)) error = classLabels[randIndex] - h weights = weights + alpha * error * dataMatrix[randIndex] del(dataIndex[randIndex]) return weights ''' 下面为线性回归的例子: 预测疝气病症预测病马死亡率 数据集见机器学习实践 ''' def classifyVector(inX, weights): prob = sigmoid(sum(inX*weights)) if prob > 0.5: return 1.0 else: return 0.0 def colicTest(): frTrain = open('horseColicTraining.txt'); #训练集 frTest = open('horseColicTest.txt') #测试集 trainingSet = []; trainingLabels = [] for line in frTrain.readlines(): currLine = line.strip().split('\t') lineArr =[] for i in range(21): lineArr.append(float(currLine[i])) trainingSet.append(lineArr) # 每一个记录的特征数据 trainingLabels.append(float(currLine[21])) #预测项 trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000) errorCount = 0; numTestVec = 0.0 for line in frTest.readlines(): numTestVec += 1.0 currLine = line.strip().split('\t') lineArr =[] for i in range(21): lineArr.append(float(currLine[i])) print('exp:' + str(classifyVector(array(lineArr), trainWeights)) + ' end:' + str(currLine[21])) if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]): errorCount += 1 errorRate = (float(errorCount)/numTestVec) print("the error rate of this test is: %f" % errorRate) return errorRate def multiTest(): numTests = 10; errorSum=0.0 for k in range(numTests): errorSum += colicTest() print("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))) multiTest()