Syn2Real Transfer Learning for Image Deraining using Gaussian Processes——CVPR2020
论文地址:Syn2Real Transfer Learning for Image Deraining using Gaussian Processes
Github地址:rajeevyasarla/Syn2Real
摘要要点提取:
最近基于CNN的方法只在有ground truth的数据上进行训练。但真实世界中有groun truth的数据集很难获取,因此现有方法都是在合成数据集上进行训练,对真实场景下的图片的泛化能力很差。
论文提出一个基于高斯处理的半监督学习框架,利用合成数据集进行训练同时在训练的过程中考虑真实场景中没有ground truth的数据。对于合成的数据利用L1和perceptual损失进行训练。对于没有ground truth的数据在未标记的隐空间通过使用高斯处理对标记和未标记的数据隐空间变量联合建模从而获得未标记数据的伪ground truth,然后利用获取到的伪真实值对未标记数据进行监督。
总的损失函数:
针对有ground truth的数据的损失函数:
针对没有ground truth的数据的损失函数:
涉及到的一些变量定义(出现的顺序与论文不一致):
由于考虑有标签数据的全部向量不太现实,作者考虑K近邻。
作者还考虑了隐空间Nf个最远向量。