吴恩达机器学习笔记8——正则化Regularization
第8章 正则化Regularization
1,过拟合(the problem of overfitting)
欠拟合,过拟合
过多的特征变量,很少的训练样本,会引起正则化。
有两种方法处理过拟合的问题,一个是减少特征的数量,人为选择去除部分特征或者模型选择算法,用算法来选择特征;
另一个是正则化,保留所有的特征,但是可以减小某个特征的幅度或者值。
2,代价函数
加入惩罚项,从1到100,一般不用对theta_0加惩罚项,加了也不要紧。
如果lambda太大了,拟合的结果就会趋于一条直线,惩罚力度太大,偏差太大。
3,线性回归的正则化(Regularized linear regression)
梯度下降法:正则化
正规方程:正则化
正则化可以解决不可逆的问题,只要加上lambda这一部分,就肯定是可逆的。
4,Logistic回归的正则化
在高级算法中,主要是构建出代价函数和梯度。