KNN实战 —— 约会网站配对效果判定
(公众号:落叶归根的猪。获取更多资源干货,交个朋友也可)
二、k-近邻算法实战之约会网站配对效果判定
上一小结学习了简单的k-近邻算法的实现方法,但是这并不是完整的k-近邻算法流程,k-近邻算法的一般流程:
1. 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
2. 准备数据:使用Python解析、预处理数据。
3. 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
4. 测试算法:计算错误率。
5. 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。
已经了解了k-近邻算法的一般流程,下面开始进入实战内容。
1、实战背景
海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:
1. 不喜欢的人
2. 魅力一般的人
3. 极具魅力的人
海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。datingTestSet.txt数据下载: 数据集下载
海伦收集的样本数据主要包含以下3种特征:
1. 每年获得的飞行常客里程数
2. 玩视频游戏所消耗时间百分比
3. 每周消费的冰淇淋公升数
这里不得不吐槽一句,海伦是个小吃货啊,冰淇淋公斤数都影响自己择偶标准。打开txt文本文件,数据格式如图所示。
2、准备数据:数据解析
在将上述特征数据输入到分类器前,必须将待处理的数据的格式改变为分类器可以接收的格式。分类器接收的数据是什么格式的?从上小结已经知道,要将数据分类两部分,即特征矩阵和对应的分类标签向量。在kNN_test02.py文件中创建名为file2matrix的函数,以此来处理输入格式问题。 将datingTestSet.txt放到与kNN_test02.py相同目录下,编写代码如下:
# -*- coding: UTF-8 -*-
import numpy as np
"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
"""
def file2matrix(filename):
# 打开文件
fr = open(filename)
# 读取文件所有内容
arrayOLines = fr.readlines() # [‘40920\t7.32\t0.95\n’,...‘’]
# 得到文件行数
numberOfLines = len(arrayOLines)
#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines,3))
#返回的分类标签向量
classLabelVector = []
#行的索引值
index = 0
for line in arrayOLines:
# ['40920\t8.326976\t0.953952\tlargeDoses\n',...'']
# s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
# 40920 8.326976 0.953952 largeDoses
# 使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFromLine = line.split('\t')
# ['40920', '8.326976', '0.953952', 'largeDoses']
# 将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index,:] = listFromLine[0:3]
#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector
"""
函数说明:main函数
Parameters:
无
Returns:
无
"""
if __name__ == '__main__':
#打开的文件名
filename = "/home/anaconda2/桌面/机器学习/算法/KNN/DatingTestSet.txt"
#打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
print(datingDataMat)
print(datingLabels)
3、分析数据:数据可视化
在kNN_test02.py文件中编写名为showdatas的函数,用来将数据可视化。编写代码如下:
4、准备数据:数据归一化
表2.1给出了四组样本,如果想要计算样本3和样本4之间的距离,可以使用欧式距离公式计算。
newValue = (oldValue - min) / (max - min)
其中min和max分别是数据集中的最小特征值和最大特征值。虽然改变数值取值范围增加了分类器的复杂度,但为了得到准确结果,我们必须这样做。
def autoNorm(dataSet):
# 获得数据的最小值
# min(0)返回该矩阵中每一列的最小值, min(1)返回该矩阵中每一行的最小值
# max(0)返回该矩阵中每一列的最大值, max(1)返回该矩阵中每一行的最大值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
# 最大值和最小值的范围
ranges = maxVals -minVals
# shape(dataSet)返回dataSet的矩阵行列数
normDataSet = np.zeros(np.shape(dataSet)) # (1000,3)
# 返回dataSet的行数
m = dataSet.shape[0] # 1000
#原始值减去最小值
normDataSet = dataSet - np.tile(minVals, (m, 1))
#除以最大和最小值的差,得到归一化数据
normDataSet = normDataSet / np.tile(ranges, (m, 1))
#返回归一化数据结果,数据范围,最小值
return normDataSet, ranges, minVals
5、测试算法:验证分类器
机器学习算法一个很重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器,检测分类器的正确率。需要注意的是,10%的测试数据应该是随机选择的,由于海伦提供的数据并没有按照特定目的来排序,所以我们可以随意选择10%数据而不影响其随机性。
为了测试分类器效果,在kNN_test02.py文件中创建函数datingClassTest,编写代码如下:
def classify0(inX, dataSet, labels, k):
# numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
# 在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
# 二维特征相减后平方
sqDiffMat = diffMat**2
# sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistances = sqDiffMat.sum(axis=1)
# 开方,计算出距离
distances = sqDistances**0.5
# 返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
# 比如sortedDistIndices[0] = 360,意味着第零位的值为360。360意味着从小到大排序后最小值在第360位
# 定一个记录类别次数的字典
classCount = {} # {[1]:"", [2]:"", ......}
for i in range(k):
#取出前k个元素的类别
# sortedDistIndices[0]=360,距离最小值排在第360位。 sortedDistIndices[0]=360, labels[360] = '1','1' = 'didntlike'
voteIlabel = labels[sortedDistIndices[i]]
# dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
# 计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
# python中字典的get方法,其中有两个参数,表示如果第一个值是字典的键,那么返回该键对应的值,
# 如果该值不是字典的键,那么返回第二个值,如果只有第一个值时,表示取该键对应的值,如果该键不存在则返回None
print("voting result:\n",classCount)
# python3中用items()替换python2中的iteritems()
# key=operator.itemgetter(1)根据字典的值进行排序
# key=operator.itemgetter(0)根据字典的键进行排序
# reverse降序排序字典
# A.sort()|sorted(A). sort是会改变原来list,sorted不会改变原来list.
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
# 返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]
def datingClassTest():
# 打开的文件名
filename = "/home/anaconda2/桌面/机器学习/算法/KNN/DatingTestSet.txt"
# 将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
datingDataMat, datingLabels = file2matrix(filename)
# 取所有数据的百分之十
hoRatio = 0.10
# 数据归一化,返回归一化后的矩阵,数据范围,数据最小值
normMat, ranges, minVals = autoNorm(datingDataMat)
# 获得normMat的行数
m = normMat.shape[0]
# 百分之十的测试数据的个数
numTestVecs = int(m * hoRatio)
# 分类错误计数
errorCount = 0.0
for i in range(numTestVecs):
# 前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],
datingLabels[numTestVecs:m], 4)
print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
if classifierResult != datingLabels[i]:
errorCount += 1.0
print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))
-------------------------------------------------------------------------------------
完整全代码:
# -*- coding: UTF-8 -*-
import numpy as np
import operator
from matplotlib.font_manager import FontProperties
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
"""
def file2matrix(filename):
# 打开文件
fr = open(filename)
# 读取文件所有内容
arrayOLines = fr.readlines() # [‘40920\t7.32\t0.95\n’,...‘’]
# 得到文件行数
numberOfLines = len(arrayOLines)
#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines,3))
#返回的分类标签向量
classLabelVector = []
#行的索引值
index = 0
for line in arrayOLines:
# ['40920\t8.326976\t0.953952\tlargeDoses\n',...'']
# s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
# 40920 8.326976 0.953952 largeDoses
# 使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFromLine = line.split('\t')
# ['40920', '8.326976', '0.953952', 'largeDoses']
# 将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index,:] = listFromLine[0:3]
#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector
"""
函数说明:对数据进行归一化
Parameters:
dataSet - 特征矩阵
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
"""
def autoNorm(dataSet):
# 获得数据的最小值
# min(0)返回该矩阵中每一列的最小值, min(1)返回该矩阵中每一行的最小值
# max(0)返回该矩阵中每一列的最大值, max(1)返回该矩阵中每一行的最大值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
# 最大值和最小值的范围
ranges = maxVals -minVals
# shape(dataSet)返回dataSet的矩阵行列数
normDataSet = np.zeros(np.shape(dataSet)) # (1000,3)
# 返回dataSet的行数
m = dataSet.shape[0] # 1000
#原始值减去最小值
normDataSet = dataSet - np.tile(minVals, (m, 1))
#除以最大和最小值的差,得到归一化数据
normDataSet = normDataSet / np.tile(ranges, (m, 1))
#返回归一化数据结果,数据范围,最小值
return normDataSet, ranges, minVals
def showdatas(datingDataMat, datingLabels):
#设置汉字格式
font = FontProperties(fname="/home/anaconda2/桌面/机器学习/算法/KNN/simsun.ttc", size=14)
#将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)
#当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))
numberOfLabels = len(datingLabels)
LabelsColors = []
for i in datingLabels:
if i == 1:
LabelsColors.append('black')
if i == 2:
LabelsColors.append('orange')
if i == 3:
LabelsColors.append('red')
#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)
axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)
plt.setp(axs0_title_text, size=9, weight='bold', color='red')
plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')
#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)
axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
plt.setp(axs1_title_text, size=9, weight='bold', color='red')
plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')
#画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)
axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)
axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
plt.setp(axs2_title_text, size=9, weight='bold', color='red')
plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
#设置图例
didntLike = mlines.Line2D([], [], color='black', marker='.',
markersize=6, label='didntLike')
smallDoses = mlines.Line2D([], [], color='orange', marker='.',
markersize=6, label='smallDoses')
largeDoses = mlines.Line2D([], [], color='red', marker='.',
markersize=6, label='largeDoses')
#添加图例
axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])
axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])
#显示图片
plt.show()
def classify0(inX, dataSet, labels, k):
# numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
# 在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
# 二维特征相减后平方
sqDiffMat = diffMat**2
# sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistances = sqDiffMat.sum(axis=1)
# 开方,计算出距离
distances = sqDistances**0.5
# 返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
# 比如sortedDistIndices[0] = 360,意味着第零位的值为360。360意味着从小到大排序后最小值在第360位
# 定一个记录类别次数的字典
classCount = {} # {[1]:"", [2]:"", ......}
for i in range(k):
#取出前k个元素的类别
# sortedDistIndices[0]=360,距离最小值排在第360位。 sortedDistIndices[0]=360, labels[360] = '1','1' = 'didntlike'
voteIlabel = labels[sortedDistIndices[i]]
# dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
# 计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
# python中字典的get方法,其中有两个参数,表示如果第一个值是字典的键,那么返回该键对应的值,
# 如果该值不是字典的键,那么返回第二个值,如果只有第一个值时,表示取该键对应的值,如果该键不存在则返回None
print("voting result:\n",classCount)
# python3中用items()替换python2中的iteritems()
# key=operator.itemgetter(1)根据字典的值进行排序
# key=operator.itemgetter(0)根据字典的键进行排序
# reverse降序排序字典
# A.sort()|sorted(A). sort是会改变原来list,sorted不会改变原来list.
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
# 返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]
"""
函数说明:分类器测试函数
Parameters:
无
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
"""
def datingClassTest():
# 打开的文件名
filename = "/home/anaconda2/桌面/机器学习/算法/KNN/DatingTestSet.txt"
# 将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
datingDataMat, datingLabels = file2matrix(filename)
# 取所有数据的百分之十
hoRatio = 0.10
# 数据归一化,返回归一化后的矩阵,数据范围,数据最小值
normMat, ranges, minVals = autoNorm(datingDataMat)
# 获得normMat的行数
m = normMat.shape[0]
# 百分之十的测试数据的个数
numTestVecs = int(m * hoRatio)
# 分类错误计数
errorCount = 0.0
for i in range(numTestVecs):
# 前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],
datingLabels[numTestVecs:m], 4)
print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
if classifierResult != datingLabels[i]:
errorCount += 1.0
print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))
if __name__ == '__main__':
#打开的文件名
filename = "/home/anaconda2/桌面/机器学习/算法/KNN/DatingTestSet.txt"
#打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
showdatas(datingDataMat, datingLabels)
datingClassTest()