数学建模方法适用总结

数学建模方法适用总结

Fisher判别:

判别分析是用于判别个体所属群体的一种统计方法。

判别分析的特点是根据已掌握的、历史上每个类别的若干样本的数据信息,总结出客观事物分类的规律性,建立判别公式和判别准则。

当遇到新的样本点时,只要根据总结出来的判别公式和判别准则,就能判别该样本点所属的类别。判别分析是一种应用性很强的统计数据分析方法。

层次分析法(可能会用到):

层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

插值与拟合(可能会用到):

给定一批数据点,需确定满足特定要求的曲线或曲面,并以此求出其它点的函数值

•若要求所求曲线(面)通过所给所有数据点,就是插值问题;

•若不要求曲线(面)通过所有数据点,而是要求它反映对象整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合

动态规划:

动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。 20 世纪 50 年代初 R. E. Bellman 等人在研究多阶段决策过程的优化问题时,提出了著名的最优性原理,把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。

对策论(博弈论):

对策论亦称博弈论。是研究具有斗争或竞争性质现象的数学理论和方法。一般认为,它既是现代数学的一个新分支,也是运筹学中的一个重要学科。对策论发展的历史并不长,但由于它所研究的现象与人们的政治、经济、军事活动乃至一般的日常生活等有着密切的联系,并且处理问题的方法又有明显特色。所以日益引起广泛的注意。

在日常生活中,经常看到一些具有相互之间斗争或竞争性质的行为。具有竞争或对抗性质的行为称为对策行为。在这类行为中,参加斗争或竞争的各方各自具有不同的目标和利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。对策论就是研究对策行为中斗争各方是否存在着最优的行动方案,以及如何找到这个最优行动方案的数学理论和方法。

决策问题:

基本要素:

从以上两个例子可以总结出,决策问题一般包括三个基本要素:行动方案、自然状态和损益函数

首先,任何决策问题都必须具有两个或两个以上的行动方案。

其次,任何决策问题,无论采取何种方案,都面临着一种或几种自然状态。自然状态简称状态,也称事件。决策问题中的自然状态是不可控制因素,因而是随机事件。

第三,在某一具体的状态下,作出某一具体的行动方案(决策),必然会生产相应的效果,这种效果通常用损益函数来描述。

基本条件:

(1)决策者有一个明确的预期达到的目标,如收益最大或损失最小;

(2)存在着两个或两个以上的可供选择的行动方案;

(3)各行动方案所面临的可能的自然状态完全可知;

(4)各行动方案在不同的状态下的损益值可以计算或能够定量地估计出来。

多元分析:(感觉非常有可能用)

由于变量的相关性,不能简单地把每个变量的结果进行汇总,这是多变量统计分析的基本出发点。

聚类分析、主成分分析、因子分析

灰色预测:

灰色预测是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

禁忌搜索算法:

为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。

数学建模方法适用总结

蒙特卡洛算法:

蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解,故又称统计模拟法或统计试验法。

蒙特卡洛方法的基本思想是当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与之有关的量时,通过某种试验的方法,得出该事件发生的频率,再通过它得到问题的解。

模糊综合评判(可能会用):

将评价目标看成是由多种因素组成的模糊集合(称为因素集u),再设定这些因素所能选取的评审等级,组成评语的模糊集合(称为评判集v),分别求出各单一因素对各个评审等级的归属程度(称为模糊矩阵),然后根据各个因素在评价目标中的权重分配,通过计算(称为模糊矩阵合成),求出评价的定量解值。上述过程即为模糊综合评判。

排队论(***):

排队论(queuing theory), 或称随机服务系统理论, 是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。它是数学运筹学的分支学科。也是研究服务系统中排队现象随机规律的学科。广泛应用于计算机网络, 生产, 运输, 库存等各项资源共享的随机服务系统。
排队论研究的内容有3个方面:统计推断,根据资料建立模型;系统的性态,即和排队有关的数量指标的概率规律性;系统的优化问题。其目的是正确设计和有效运行各个服务系统,使之发挥最佳效益。

微分方程模型(***):

我们在研究一些问题时,会涉及到变量的变化率或导数,这样所得到的变量之间的关系就是微分方程模型,其反映的是变量之间的间接关系,通过求解方程,就得到了直接关系。大多数情况下,我们要通过分析具体情况,通过类比根据规律列出微分方程。

线性规划:

线性规划方法是企业进行总产量计划时常用的一种定量方法。线性规划是运筹学的一个最重要的分支,理论上最完善,实际应用得最广泛。主要用于研究有限资源的最佳分配问题,即如何对有限的资源作出最佳方式地调配和最有利地使用,以便最充分地发挥资源的效能去获取最佳的经济效益。由于有成熟的计算机应用软件的支持,采用线性规划模型安排生产计划,并不是一件困难的事情。在总体计划中,用线性规划模型解决问题的思路是,在有限的生产资源和市场需求条件约束下,求利润最大的总产量计划。该方法的最大优点是可以处理多品种问题。