HBASE讲解
https://www.ibm.com/developerworks/cn/analytics/library/ba-cn-bigdata-hbase/index.html
表 2. 数据在 RDBMS 中的排布示例
ID | 姓 | 名 | 密码 | 时间戳 |
---|---|---|---|---|
1 | 张 | 三 | 111 | 20160719 |
2 | 李 | 四 | 222 | 20160720 |
那么数据在 HBase 中的排布会是什么样子呢?如表 3 所示(这只是逻辑上的排布)。
表 3. 数据在 HBase 中的排布(逻辑上)
Row-Key | Value(CF、Qualifier、Version) |
---|---|
1 | info{'姓': '张','名':'三'} pwd{'密码': '111'} |
2 | Info{'姓': '李','名':'四'} pwd{'密码': '222'} |
从上面示例表中,我们可以看出,在 HBase 中首先会有 Column Family 的概念,简称为 CF。CF 一般用于将相关的列(Column)组合起来。在物理上 HBase 其实是按 CF 存储的,只是按照 Row-key 将相关 CF 中的列关联起来。物理上的数据排布大致可以如表 4 所示。
表 4. 数据在 HBase 中的排布
Row-Key | CF:Column-Key | 时间戳 | Cell Value |
---|---|---|---|
1 | info:fn | 123456789 | 三 |
1 | info:ln | 123456789 | 张 |
2 | info:fn | 123456789 | 四 |
2 | info:ln | 123456789 | 李 |
我们已经提到 HBase 是按照 CF 来存储数据的。在表 3 中,我们看到了两个 CF,分别是 info 和 pwd。info 存储着姓名相关列的数据,而 pwd 则是密码相关的数据。上表便是 info 这个 CF 存储在 Hbase 中的数据排布。Pwd 的数据排布是类似的。上表中的 fn 和 ln 称之为 Column-key 或者 Qulifimer。在 Hbase 中,Row-key 加上 CF 加上 Qulifier 再加上一个时间戳才可以定位到一个单元格数据(Hbase 中每个单元格默认有 3 个时间戳的版本数据)。初学者,在一开始接触这些概念是很容易混淆。其实不管是 CF 还是 Qulifier 都是客户定义出来的。也就是说在 HBase 中创建表格时,就需要指定表格的 CF、Row-key 以及 Qulifier。我们会在后续的介绍中,尝试指定这些相关的概念,以便加深理解。这里我们先通过下图理解下 HBase 中,逻辑上的数据排布与物理上的数据排布之间的关系。
图 1. Hbase 中逻辑上数据的排布与物理上排布的关联
从上图我们看到 Row1 到 Row5 的数据分布在两个 CF 中,并且每个 CF 对应一个 HFile。并且逻辑上每一行中的一个单元格数据,对应于 HFile 中的一行,然后当用户按照 Row-key 查询数据的时候,HBase 会遍历两个 HFile,通过相同的 Row-Key 标识,将相关的单元格组织成行返回,这样便有了逻辑上的行数据。讲解到这,我们就大致了解 HBase 中的数据排布格式,以及与 RDBMS 的一些区别。
对于 RDBMS 来说,一般都是以 SQL 作为为主要的访问方式。而 HBase 是一种"NoSQL"数据库。"NoSQL"是一个通用词表示该数据库并
是 RDBMS 。现在的市面上有许多种 NoSQL 数据库,如 BerkeleyDB 是本地 NoSQL 数据库的例子, HBase 则为大型分布式 NoSql 数据库。从技术上来说,Hbase 更像是"数据存储"而非"数据库"(HBase 和 HDFS 都属于大数据的存储层)。因此,HBase 缺少很多 RDBMS 特性,如列类型,二级索引,触发器和高级查询语言等。然而, HBase 也具有许多其他特征同时支持线性化和模块化扩充。最明显的方式,我们可以通过增加 Region Server 的数量扩展 HBase。并且 HBase 可以放在普通的服务器中,例如将集群从 5 个扩充到 10 个 Region Server 时,存储空间和处理容量都可以同时翻倍。当然 RDBMS 也能很好的扩充,但仅对一个点,尤其是对一个单独数据库服务器而言,为了更好的性能,往往需要特殊的硬件和存储设备(往往价格也非常昂贵)。
HBase 相关的模块以及 HBase 表格的特性
在这里,让我们了解下 HBase 都有哪些模块,以及大致的工作流程。前面我们提到过 HBase 也是构建于 HDFS 之上,这是正确的,但也不是完全正确。HBase 其实也支持直接在本地文件系统之上运行,不过这样的 HBase 只能运行在一台机器上,那么对于分布式大数据的环境是没有意义的(这也是所谓的 HBase 的单机模式)。一般只用于测试或者验证某一个 HBase 的功能,后面我们在详细的介绍 HBase 的几种运行模式。这里我们只要记得在分布式的生产环境中,HBase 需要运行在 HDFS 之上,以 HDFS 作为其基础的存储设施。HBase 上层提供了访问的数据的 Java API 层,供应用访问存储在 HBase 的数据。在 HBase 的集群中主要由 Master 和 Region Server 组成,以及 Zookeeper,具体模块如下图所示。
图 2. HBase 的相关模块
接下来,我们简单的一一介绍下 HBase 中相关模块的作用。
-
Master
HBase Master 用于协调多个 Region Server,侦测各个 Region Server 之间的状态,并平衡 Region Server 之间的负载。HBase Master 还有一个职责就是负责分配 Region 给 Region Server。HBase 允许多个 Master 节点共存,但是这需要 Zookeeper 的帮助。不过当多个 Master 节点共存时,只有一个 Master 是提供服务的,其他的 Master 节点处于待命的状态。当正在工作的 Master 节点宕机时,其他的 Master 则会接管 HBase 的集群。
-
Region Server
对于一个 Region Server 而言,其包括了多个 Region。Region Server 的作用只是管理表格,以及实现读写操作。Client 直接连接 Region Server,并通信获取 HBase 中的数据。对于 Region 而言,则是真实存放 HBase 数据的地方,也就说 Region 是 HBase 可用性和分布式的基本单位。如果当一个表格很大,并由多个 CF 组成时,那么表的数据将存放在多个 Region 之间,并且在每个 Region 中会关联多个存储的单元(Store)。
-
Zookeeper
对于 HBase 而言,Zookeeper 的作用是至关重要的。首先 Zookeeper 是作为 HBase Master 的 HA 解决方案。也就是说,是 Zookeeper 保证了至少有一个 HBase Master 处于运行状态。并且 Zookeeper 负责 Region 和 Region Server 的注册。其实 Zookeeper 发展到目前为止,已经成为了分布式大数据框架中容错性的标准框架。不光是 HBase,几乎所有的分布式大数据相关的开源框架,都依赖于 Zookeeper 实现 HA。
一个完整分布式的 HBase 的工作原理示意图如下:
图 3. HBase 的工作原理
在上面的图中,我们需要注意几个我们之前没有提到的概念:Store、MemStore、StoreFile 以及 HFile。带着这几个新的概念,我们完整的梳理下整个 HBase 的工作流程。
首先我们需要知道 HBase 的集群是通过 Zookeeper 来进行机器之前的协调,也就是说 HBase Master 与 Region Server 之间的关系是依赖 Zookeeper 来维护。当一个 Client 需要访问 HBase 集群时,Client 需要先和 Zookeeper 来通信,然后才会找到对应的 Region Server。每一个 Region Server 管理着很多个 Region。对于 HBase 来说,Region 是 HBase 并行化的基本单元。因此,数据也都存储在 Region 中。这里我们需要特别注意,每一个 Region 都只存储一个 Column Family 的数据,并且是该 CF 中的一段(按 Row 的区间分成多个 Region)。Region 所能存储的数据大小是有上限的,当达到该上限时(Threshold),Region 会进行分裂,数据也会分裂到多个 Region 中,这样便可以提高数据的并行化,以及提高数据的容量。每个 Region 包含着多个 Store 对象。每个 Store 包含一个 MemStore,和一个或多个 HFile。MemStore 便是数据在内存中的实体,并且一般都是有序的。当数据向 Region 写入的时候,会先写入 MemStore。当 MemStore 中的数据需要向底层文件系统倾倒(Dump)时(例如 MemStore 中的数据体积到达 MemStore 配置的最大值),Store 便会创建 StoreFile,而 StoreFile 就是对 HFile 一层封装。所以 MemStore 中的数据会最终写入到 HFile 中,也就是磁盘 IO。由于 HBase 底层依靠 HDFS,因此 HFile 都存储在 HDFS 之中。这便是整个 HBase 工作的原理简述。
我们了解了 HBase 大致的工作原理,那么在 HBase 的工作过程中,如何保证数据的可靠性呢?带着这个问题,我们理解下 HLog 的作用。HBase 中的 HLog 机制是 WAL 的一种实现,而 WAL(一般翻译为预写日志)是事务机制中常见的一致性的实现方式。每个 Region Server 中都会有一个 HLog 的实例,Region Server 会将更新操作(如 Put,Delete)先记录到 WAL(也就是 HLog)中,然后将其写入到 Store 的 MemStore,最终 MemStore 会将数据写入到持久化的 HFile 中(MemStore 到达配置的内存阀值)。这样就保证了 HBase 的写的可靠性。如果没有 WAL,当 Region Server 宕掉的时候,MemStore 还没有写入到 HFile,或者 StoreFile 还没有保存,数据就会丢失。或许有的读者会担心 HFile 本身会不会丢失,这是由 HDFS 来保证的。在 HDFS 中的数据默认会有 3 份。因此这里并不考虑 HFile 本身的可靠性。
前面,我们很多次提到了 HFile,也就是 HBase 持久化的存储文件。也许有的读者还不能完全理解 HFile,这里我们便详细的看看 HFile 的结构,如下图。
图 4. HFile 的结构
从图中我们可以看到 HFile 由很多个数据块(Block)组成,并且有一个固定的结尾块。其中的数据块是由一个 Header 和多个 Key-Value 的键值对组成。在结尾的数据块中包含了数据相关的索引信息,系统也是通过结尾的索引信息找到 HFile 中的数据。HFile 中的数据块大小默认为 64KB。如果访问 HBase 数据库的场景多为有序的访问,那么建议将该值设置的大一些。如果场景多为随机访问,那么建议将该值设置的小一些。一般情况下,通过调整该值可以提高 HBase 的性能。
如果要用很短的一句话总结 HBase,我们可以认为 HBase 就是一个有序的多维 Map,其中每一个 Row-key 映射了许多数据,这些数据存储在 CF 中的 Column。我们可以用下图来表示这句话。
图 5. HBase 的数据映射关系