大数据Spark01简介
Spark简介
Apache Spark 是一个大数据处理快速通用引擎,提供了分布式的内存抽象RDD(这就是快速计算的原因之一)。
Spark最初由美国加州伯克利大学(UCBerkeley)的AMP(Algorithms, Machines and People)实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。Spark在诞生之初属于研究性项目,其诸多核心理念均源自学术研究论文。2013年,Spark加入Apache孵化器项目后,开始获得迅猛的发展,如今已成为Apache软件基金会最重要的三大分布式计算系统开源项目之一(即Hadoop、Spark、Storm)。
Spark作为大数据计算平台的后起之秀,在2014年打破了Hadoop保持的基准排序(Sort Benchmark)纪录,使用206个节点在23分钟的时间里完成了100TB数据的排序,而Hadoop则是使用2000个节点在72分钟的时间里完成同样数据的排序。也就是说,Spark仅使用了十分之一的计算资源,获得了比Hadoop快3倍的速度。新纪录的诞生,使得Spark获得多方追捧,也表明了Spark可以作为一个更加快速、高效的大数据计算平台。
Spark具有如下几个主要特点
运行速度快:Spark使用先进的DAG(Directed Acyclic Graph,有向无环图)执行引擎,以支持循环数据流与内存计算,基于内存的执行速度可比Hadoop MapReduce快上百倍,基于磁盘的执行速度也能快十倍;
容易使用:Spark支持使用Scala、Java、Python和R语言进行编程,简洁的API设计有助于用户轻松构建并行程序,几行代码就能实现 WordCount。提供了80多种高级操作用与并行app,并且可以通过Spark
Shell进行交互式编程;
通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算、机器学习和图算法组件,这些组件可以无缝整合在同一个应用中,足以应对复杂的计算;也就是说只要把Spark部署成功,这些融合组件都能够使用,这就是Spark的一站式解决方案。
运行模式多样:Spark可运行于独立的集群模式中,或者运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源。
Spark源码托管在Github中,截至2016年3月,共有超过800名来自200多家不同公司的开发人员贡献了15000次代码提交,可见Spark的受欢迎程度。
此外,每年举办的全球Spark顶尖技术人员峰会Spark Summit,吸引了使用Spark的一线技术公司及专家汇聚一堂,共同探讨目前Spark在企业的落地情况及未来Spark的发展方向和挑战。Spark Summit的参会人数从2014年的不到500人暴涨到2015年的2000多人,足以反映Spark社区的旺盛人气。
Spark如今已吸引了国内外各大公司的注意,如腾讯、淘宝、百度、亚马逊等公司均不同程度地使用了Spark来构建大数据分析应用,并应用到实际的生产环境中。相信在将来,Spark会在更多的应用场景中发挥重要作用。
Spark的生态系统
在实际应用中,大数据处理主要包括以下三个类型:
--复杂的批量数据处理:时间跨度通常在数十分钟到数小时之间;
--基于历史数据的交互式查询:时间跨度通常在数十秒到数分钟之间;
--基于实时数据流的数据处理:时间跨度通常在数百毫秒到数秒之间。
目前已有很多相对成熟的开源软件用于处理以上三种情景,比如,可以利用Hadoop MapReduce来进行批量数据处理,可以用Impala来进行交互式查询(Impala与Hive相似,但底层引擎不同,提供了实时交互式SQL查询),对于流式数据处理可以采用开源流计算框架Storm。一些企业可能只会涉及其中部分应用场景,只需部署相应软件即可满足业务需求,但是,对于互联网公司而言,通常会同时存在以上三种场景,就需要同时部署三种不同的软件,这样做难免会带来一些问题:
--不同场景之间输入输出数据无法做到无缝共享,通常需要进行数据格式的转换;
--不同的软件需要不同的开发和维护团队,带来了较高的使用成本;
--比较难以对同一个集群中的各个系统进行统一的资源协调和分配。
Spark的设计遵循“一个软件栈满足不同应用场景”的理念,逐渐形成了一套完整的生态系统,既能够提供内存计算框架,也可以支持SparkCore进行批处理、SparkSQL即席查询、SparkStreaming实时流式计算、机器学习和图计算等。Spark可以部署在资源管理器YARN之上,提供一站式的大数据解决方案。因此,Spark所提供的生态系统足以应对上述三种场景,即同时支持批处理、交互式查询和流数据处理。
现在,Spark生态系统已经成为伯克利数据分析软件栈BDAS(Berkeley Data Analytics Stack)的重要组成部分。BDAS的架构如图所示,从中可以看出,Spark专注于数据的处理分析,而数据的存储还是要借助于Hadoop分布式文件系统HDFS、Amazon S3等来实现的。因此,Spark生态系统可以很好地实现与Hadoop生态系统的兼容,使得现有Hadoop应用程序可以非常容易地迁移到Spark系统中。
BDAS架构
Spark的生态系统主要包含了Spark Core、Spark SQL、Spark Streaming、MLLib和GraphX 等组件,各个组件的具体功能如下:
* Spark Core:Spark Core包含Spark的基本功能,如内存计算、任务调度、部署模式、故障恢复、存储管理等。Spark建立在统一的抽象RDD之上,使其可以以基本一致的方式应对不同的大数据处理场景;通常所说的Apache Spark,就是指Spark Core;
* Spark SQL:Spark SQL允许开发人员直接处理RDD,同时也可查询Hive、HBase等外部数据源。Spark SQL的一个重要特点是其能够统一处理关系表和RDD,使得开发人员可以轻松地使用SQL命令进行查询,并进行更复杂的数据分析;
* Spark Streaming:Spark Streaming支持高吞吐量、可容错处理的实时流数据处理,其核心思路是将流式计算分解成一系列短小的批处理作业。Spark Streaming支持多种数据输入源,如Kafka、Flume和TCP套接字等;
* MLlib(机器学习):MLlib提供了常用机器学习算法的实现,包括聚类、分类、回归、协同过滤等,降低了机器学习的门槛,开发人员只要具备一定的理论知识就能进行机器学习的工作;
* GraphX(图计算):GraphX是Spark中用于图计算的API,可认为是Pregel在Spark上的重写及优化,Graphx性能良好,拥有丰富的功能和运算符,能在海量数据上自如地运行复杂的图算法。
Spark与MapReduce的比较
Hadoop虽然已成为大数据技术的事实标准,但其本身还存在诸多缺陷,最主要的缺陷是其MapReduce计算模型延迟过高,无法胜任实时、快速计算的需求,因而只适用于离线批处理的应用场景。
回顾Hadoop的工作流程,可以发现Hadoop存在如下一些缺点:
--表达能力有限。计算都必须要转化成Map和Reduce两个操作,但这并不适合所有的情况,难以描述复杂的数据处理过程;
-- 磁盘IO开销大。每次执行时都需要从磁盘读取数据,并且在计算完成后需要将中间结果写入到磁盘中,IO开销较大;
-- 延迟高。一次计算可能需要分解成一系列按顺序执行的MapReduce任务,任务之间的衔接由于涉及到IO开销,会产生较高延迟。而且,在前一个任务执行完成之前,其他任务无法开始,难以胜任复杂、多阶段的计算任务。
Spark在借鉴Hadoop MapReduce优点的同时,很好地解决了MapReduce所面临的问题。相比于MapReduce,
Spark主要具有如下优点:
-- Spark的计算模式也属于MapReduce,但不局限于Map和Reduce操作,还提供了多种数据集操作类型,编程模型比MapReduce更灵活;
-- Spark提供了内存计算,中间结果直接放到内存中,带来了更高的迭代运算效率;
-- Spark基于DAG的任务调度执行机制,要优于MapReduce的迭代执行机制。
Spark最大的特点就是将计算数据、中间结果都存储在内存中,大大减少了IO开销,因而,Spark更适合于迭代运算比较多的数据挖掘与机器学习运算。使用Hadoop进行迭代计算非常耗资源,因为每次迭代都需要从磁盘中写入、读取中间数据,IO开销大。而Spark将数据载入内存后,之后的迭代计算都可以直接使用内存中的中间结果作运算,避免了从磁盘中频繁读取数据。
在实际进行开发时,使用Hadoop需要编写不少相对底层的代码,不够高效。相对而言,Spark提供了多种高层次、简洁的API,通常情况下,对于实现相同功能的应用程序,Spark的代码量要比Hadoop少2-5倍。更重要的是,Spark提供了实时交互式编程反馈,可以方便地验证、调整算法。
尽管Spark相对于Hadoop而言具有较大优势,但Spark并不能完全替代Hadoop,主要用于替代Hadoop中的MapReduce计算模型。实际上,Spark已经很好地融入了Hadoop生态圈,并成为其中的重要一员,它可以借助于YARN实现资源调度管理,借助于HDFS实现分布式存储。此外,Hadoop可以使用廉价的、异构的机器来做分布式存储与计算,但是,Spark对硬件的要求稍高一些,对内存与CPU有一定的要求。
总结:
1)原理上:MapReduce是基于磁盘大数据批量处理系统。而Spark是基于RDD(弹性分布数据集)数据处理,显示的将RDD数据存储在内存中或磁盘上。
2)模型上:MapReduce可以处理超大规模的数据,适合日志的分析和挖掘等。Spark适合数据的挖掘(处理的数据量低于MapReduce);机器学习等多迭代式计算任务。
RDD理解
* l RDD:是弹性分布式数据集(Resilient Distributed Dataset)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型;
* l DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系;
Spark的核心是建立在统一的抽象RDD之上,使得Spark的各个组件可以无缝进行集成,在同一个应用程序中完成大数据计算任务。RDD的设计理念源自AMP实验室发表的论文《Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing》。
RDD的设计背景
在实际应用中,存在许多迭代式算法(比如机器学习、图算法等)和交互式数据挖掘工具,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入。但是,目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销。虽然,类似Pregel等图计算框架也是将结果保存在内存当中,但是,这些框架只能支持一些特定的计算模式,并没有提供一种通用的数据抽象。RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,从而避免了中间结果的存储,大大降低了数据复制、磁盘IO和序列化开销。
一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可以分成多个分区,每个分区就是一个数据集片段,并且一个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算。RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,不能直接修改,只能基于稳定的物理存储中的数据集来创建RDD,或者通过在其他RDD上执行确定的转换操作(如map、join和groupBy)而创建得到新的RDD。RDD提供了一组丰富的操作以支持常见的数据运算,分为“行动”(Action)和“转换”(Transformation)两种类型,前者用于执行计算并指定输出的形式,后者指定RDD之间的相互依赖关系。两类操作的主要区别是,转换操作(比如map、filter、groupBy、join等)接受RDD并返回RDD,而行动操作(比如count、collect等)接受RDD但是返回非RDD(即输出一个值或结果)。RDD提供的转换接口都非常简单,都是类似map、filter、groupBy、join等粗粒度的数据转换操作,而不是针对某个数据项的细粒度修改。因此,RDD比较适合对于数据集中元素执行相同操作的批处理式应用,而不适合用于需要异步、细粒度状态的应用,比如Web应用系统、增量式的网页爬虫等。正因为这样,这种粗粒度转换接口设计,会使人直觉上认为RDD的功能很受限、不够强大。但是,实际上RDD已经被实践证明可以很好地应用于许多并行计算应用中,可以具备很多现有计算框架(比如MapReduce、SQL、Pregel等)的表达能力,并且可以应用于这些框架处理不了的交互式数据挖掘应用。
Spark用Scala语言实现了RDD的API,程序员可以通过调用API实现对RDD的各种操作。RDD典型的执行过程如下:
1. RDD读入外部数据源(或者内存中的集合)进行创建;
2. RDD经过一系列的“转换”操作,每一次都会产生不同的RDD,供给下一个“转换”使用;
3. 最后一个RDD经“行动”操作进行处理,并输出到外部数据源(或者变成Scala集合或标量)。
需要说明的是,RDD采用了惰性调用,即在RDD的执行过程中(如图所示),真正的计算发生在RDD的“行动”操作,对于“行动”之前的所有“转换”操作,Spark只是记录下“转换”操作应用的一些基础数据集以及RDD生成的轨迹,即相互之间的依赖关系,而不会触发真正的计算。
Spark的转换和行动操作
例如,在图中,从输入中逻辑上生成A和C两个RDD,经过一系列“转换”操作,逻辑上生成了F(也是一个RDD),之所以说是逻辑上,是因为这时候计算并没有发生,Spark只是记录了RDD之间的生成和依赖关系。当F要进行输出时,也就是当F进行“行动”操作的时候,Spark才会根据RDD的依赖关系生成DAG,并从起点开始真正的计算。
RDD执行过程的一个实例
上述这一系列处理称为一个“血缘关系(Lineage)”,即DAG拓扑排序的结果。采用惰性调用,通过血缘关系连接起来的一系列RDD操作就可以实现管道化(pipeline),避免了多次转换操作之间数据同步的等待,而且不用担心有过多的中间数据,因为这些具有血缘关系的操作都管道化了,一个操作得到的结果不需要保存为中间数据,而是直接管道式地流入到下一个操作进行处理。同时,这种通过血缘关系把一系列操作进行管道化连接的设计方式,也使得管道中每次操作的计算变得相对简单,保证了每个操作在处理逻辑上的单一性;相反,在MapReduce的设计中,为了尽可能地减少MapReduce过程,在单个MapReduce中会写入过多复杂的逻辑。
RDD的5大特性
注意:
textFile方法底层封装的是读取MR读取文件的方式,读取文件之前先split,默认split大小是一个block大小。
RDD实际上不存储数据
什么是K,V格式的RDD?
如果RDD里面存储的数据都是二元组对象,那么这个RDD我们就叫做K,V格式的RDD。
哪里体现RDD的弹性(容错)?
partition数量,大小没有限制,体现了RDD的弹性。
RDD之间依赖关系,可以基于上一个RDD重新计算出RDD。
哪里体现RDD的分布式?
RDD是由Partition组成,partition是分布在不同节点上的。
RDD提供计算最佳位置,体现了数据本地化。体现了大数据中“计算移动数据不移动”的理念。
Spark任务执行原理
以上图中有四个机器节点,Driver和Worker是启动在节点上的进程,运行在JVM中的进程。
-- Driver与集群节点之间有频繁的通信。
-- Driver负责任务(tasks)的分发和结果的回收。任务的调度。如果task的计算结果非常大就不要回收了。会造成oom。
-- Worker是Standalone资源调度框架里面资源管理的从节点。也是JVM进程。
-- Master是Standalone资源调度框架里面资源管理的主节点。也是JVM进程。
架构设计
如图9-5所示,Spark运行架构包括集群资源管理器(Cluster Manager)、运行作业任务的工作节点(Worker Node)、每个应用的任务控制节点(Driver)和每个工作节点上负责具体任务的执行进程(Executor)。其中,集群资源管理器可以是Spark自带的资源管理器,也可以是YARN或Mesos等资源管理框架。
与Hadoop MapReduce计算框架相比,Spark所采用的Executor有两个优点:一是利用多线程来执行具体的任务(Hadoop MapReduce采用的是进程模型),减少任务的启动开销;二是Executor中有一个BlockManager存储模块,会将内存和磁盘共同作为存储设备,当需要多轮迭代计算时,可以将中间结果存储到这个存储模块里,下次需要时,就可以直接读该存储模块里的数据,而不需要读写到HDFS等文件系统里,因而有效减少了IO开销;或者在交互式查询场景下,预先将表缓存到该存储系统上,从而可以提高读写IO性能。
图9-5 Spark运行架构
总体而言,如图9-6所示,在Spark中,一个应用(Application)由一个任务控制节点(Driver)和若干个作业(Job)构成,一个作业由多个阶段(Stage)构成,一个阶段由多个任务(Task)组成。当执行一个应用时,任务控制节点会向集群管理器(Cluster Manager)申请资源,启动Executor,并向Executor发送应用程序代码和文件,然后在Executor上执行任务,运行结束后,执行结果会返回给任务控制节点,或者写到HDFS或者其他数据库中。
图9-6 Spark中各种概念之间的相互关系
Spark运行基本流程
如图9-7 所示,Spark的基本运行流程如下:
(1)当一个Spark应用被提交时,首先需要为这个应用构建起基本的运行环境,即由任务控制节点(Driver)创建一个SparkContext,由SparkContext负责和资源管理器(Cluster Manager)的通信以及进行资源的申请、任务的分配和监控等。SparkContext会向资源管理器注册并申请运行Executor的资源;
(2)资源管理器为Executor分配资源,并启动Executor进程,Executor运行情况将随着“心跳”发送到资源管理器上;
(3)SparkContext根据RDD的依赖关系构建DAG图,DAG图提交给DAG调度器(DAGScheduler)进行解析,将DAG图分解成多个“阶段”(每个阶段都是一个任务集),并且计算出各个阶段之间的依赖关系,然后把一个个“任务集”提交给底层的任务调度器(TaskScheduler)进行处理;Executor向SparkContext申请任务,任务调度器将任务分发给Executor运行,同时,SparkContext将应用程序代码发放给Executor;
(4)任务在Executor上运行,把执行结果反馈给任务调度器,然后反馈给DAG调度器,运行完毕后写入数据并释放所有资源。
图9-7 Spark运行基本流程图
总体而言,Spark运行架构具有以下特点:
(1)每个应用都有自己专属的Executor进程,并且该进程在应用运行期间一直驻留。Executor进程以多线程的方式运行任务,减少了多进程任务频繁的启动开销,使得任务执行变得非常高效和可靠;
(2)Spark运行过程与资源管理器无关,只要能够获取Executor进程并保持通信即可;
(3)Executor上有一个BlockManager存储模块,类似于键值存储系统(把内存和磁盘共同作为存储设备),在处理迭代计算任务时,不需要把中间结果写入到HDFS等文件系统,而是直接放在这个存储系统上,后续有需要时就可以直接读取;在交互式查询场景下,也可以把表提前缓存到这个存储系统上,提高读写IO性能;
(4)任务采用了数据本地性和推测执行等优化机制。数据本地性是尽量将计算移到数据所在的节点上进行,即“计算向数据靠拢”,因为移动计算比移动数据所占的网络资源要少得多。而且,Spark采用了延时调度机制,可以在更大的程度上实现执行过程优化。比如,拥有数据的节点当前正被其他的任务占用,那么,在这种情况下是否需要将数据移动到其他的空闲节点呢?答案是不一定。因为,如果经过预测发现当前节点结束当前任务的时间要比移动数据的时间还要少,那么,调度就会等待,直到当前节点可用。