如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

目录

一、软件版本 2

二、安装教程 2

1、VMWare安装教程 2

2、Ubuntu安装教程 2

3、安装VMWare-Tools 5

4、共享文件夹的创建 7

5、用户创建 11

6、克隆Ubuntu 11

7、主机配置 14

8、SSH无密码验证配置 14

9、Java环境配置 16

10、hadoop集群安装 16

三、运行wordcount程序 2

软件版本

Hadoop版本号:hadoop-2.6.0-cdh5.7.0;

VMWare版本号:VMware 15

Linux系统:CentOS 6.4-6.5 或Ubuntu版本号:ubuntu-12

Jdk版本号:Jdk1.7.0._79

后三项对版本要求不严格,如果使用Hbase1.0.0版本,需要JDK1.8以上版本。


安装教程

1、VMWare安装教程

VMWare虚拟机是个软件,安装后可用来创建虚拟机,在虚拟机上再安装系统,在这个虚拟系统上再安装应用软件,所有应用就像操作一台真正的电脑,

请直接到VMWare官方网站下载相关软件

http://www.vmware.com/cn/products/workstation/workstation-evaluation

以上链接如果因为官方网站变动发生变化,可以直接在搜索引擎中搜索VMWare来查找其下载地址,建议不要在非官方网站下载。

安装试用版后有30天的试用期

2、Ubuntu安装教程

打开VMWare点击创建新的虚拟机

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

选择典型

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

点击浏览

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

选择ubuntu

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

 暂时只建两个虚拟机,注意分别给两个虚拟机起名为Ubuntu1和Ubuntu2;也可以按照自己的习惯取名,但是后续的许多配置文件要相应更改,会带来一些麻烦。

  密码也请记牢,后面会经常使用。

安装完成后,登录---》vmware查看--》立即使用客户机,实现大屏操作

补充:

xshell如何连接vmware下的ubuntu?https://www.linuxidc.com/Linux/2017-12/149795.htm (需要事先安装ssh服务器)

 

3、安装VMWare-Tools(用处:实现共享文件夹功能,使本机和虚拟机共享本机文件,有些版本自动安装,不需要手动安装)

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

Ubuntu中会显示有光盘插入了光驱

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

双击打开光盘将光盘中VMwareTools-9.6.1-1378637.tar.gz复制到桌面,复制方法类似windows系统操作。

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

点击Extract Here

 

从菜单打开Ubuntu的控制终端

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

cd Desktop/vmware-tools-distrib/

sudo ./vmware-install.pl

输入root密码,一路回车,重启系统

注意: ubuntu安装后, root 用户默认是被锁定了的,不允许登录,也不允许“ su” 到 root 。

允许 su 到 root非常简单,下面是设置的方法:(一般不用,了解)

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?


注意ubuntu安装后要更新软件源

cd /etc/apt

sudo apt-get update

若是源路径有误,需要更改源路径

第一、备份原有源文件

sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak

第二、修改系统源

sudo /etc/apt/sources.list

编辑文件,将里面内容全部删除,然后替换下面内容。(推荐优先使用阿里云上的资源)

deb http://mirrors.aliyun.com/ubuntu/ trusty main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-proposed main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-backports main restricted universe multiverse

第三、再次更新执行

sudo apt-get update -y

执行后如果还有报错,根据最后几行出现的错误提示,然后执行下面的。

apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 3B4FE6ACC0B21F32

根据各自的提示报错更换,因为不同机器报错不同的。

 

最后,再次更新

再次执行apt-get update -y更新系统,最后是没有报错的。

 

===============================

还有以下源可以使用(也可以使用163上的资源)

 deb http://mirrors.163.com/ubuntu/ precise main restricted
deb-src http://mirrors.163.com/ubuntu/ precise main restricted
deb http://mirrors.163.com/ubuntu/ precise-updates main restricted
deb-src http://mirrors.163.com/ubuntu/ precise-updates main restricted
deb http://mirrors.163.com/ubuntu/ precise universe
deb-src http://mirrors.163.com/ubuntu/ precise universe
deb http://mirrors.163.com/ubuntu/ precise-updates universe
deb-src http://mirrors.163.com/ubuntu/ precise-updates universe
deb http://mirrors.163.com/ubuntu/ precise multiverse
deb-src http://mirrors.163.com/ubuntu/ precise multiverse
deb http://mirrors.163.com/ubuntu/ precise-updates multiverse
deb-src http://mirrors.163.com/ubuntu/ precise-updates multiverse
deb http://mirrors.163.com/ubuntu/ precise-backports main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ precise-backports main restricted universe multiverse
deb http://mirrors.163.com/ubuntu/ precise-security main restricted
deb-src http://mirrors.163.com/ubuntu/ precise-security main restricted
deb http://mirrors.163.com/ubuntu/ precise-security universe
deb-src http://mirrors.163.com/ubuntu/ precise-security universe
deb http://mirrors.163.com/ubuntu/ precise-security multiverse
deb-src http://mirrors.163.com/ubuntu/ precise-security multiverse
deb http://extras.ubuntu.com/ubuntu precise main
deb-src http://extras.ubuntu.com/ubuntu precise main

安装各种软件比较方便

注意:

在执行命令sudo apt-get install openssh-server时,可能出现如下错误:

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

这个问题的原因是ubuntu的/etc/apt/source.list中的源比较旧了,需要更新一下

更新方法:执行命令sudo apt-get -y update

更新完毕之后,在使用sudo apt-get install openssh-server就没有问题了。

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

 

当执行命令sudo apt-get -y update时有报如下错:


4、共享文件夹的创建

宿主机与虚拟机共享文件夹的创建

1)点击虚拟机->设置,点击选项->共享文件夹,选择总是启用,点击添加按钮

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

2)点击下一步

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

3)选择共享文件夹路径(此路径为本地文件路径),点击下一步

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

4)选择启用该共享,点击完成

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

5)点击确定

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

6)则可以在如图所示文件夹下寻找共享文件夹

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?


5、用户创建

创建hadoop用户组: sudo addgroup hadoop 

   创建hduser用户:sudo adduser -ingroup hadoop hduser

   注意这里为hduser用户设置同主用户相同的密码

   为hadoop用户添加权限:sudo gedit /etc/sudoers,在root    ALL=(ALL:ALL) ALL下添加

hduser ALL=(ALL:ALL) ALL

设置好后重启机器:sudo reboot

 

切换到hduser用户登录;

 

  1. 克隆Ubuntu

通过克隆的方法安装Ubnutu

1)在安装好的ubnutu上右键单机,选择管理->克隆

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

2)点击下一步

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

3)选择虚拟机的当前状态,点击下一步

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

4)选择创建一个完整克隆,点击下一步

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

5)填写新虚拟机的名称和安装位置,点击完成

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

6)点击关闭,完成克隆

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?


7、主机配置

Hadoop集群中包括2个节点:1个Master,2个Salve,其中虚拟机Ubuntu1既做Master,也做Slave;虚拟机Ubuntu2只做Slave。

   配置hostname:Ubuntu下修改机器名称: sudo gedit /etc/hostname ,改为Ubuntu1;

修改成功后用重启;

hostname,查看当前主机名是否设置成功;

 

此时在虚拟机克隆机中修改主机名,方法同上

注意:修改克隆的主机名为Ubuntu2。

   网路配置为默认NAT模式就可以

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

   配置hosts文件:查看Ubuntu1和Ubuntu2的ip:ifconfig;

  在两个虚拟机上分别 打开hosts文件:sudo gedit /etc/hosts,添加如下内容:

     务必遵循格式:  IP+一个空格+hostname   若是中间多个空格使ping不通的,切记

   192.168.xxx.xxx Ubuntu1 如:192.168.5.129  Ubuntu1

   192.168.xxx.xxx Ubuntu2  如:192.168.5.130  Ubuntu2

 分别重启

 注意这里的ip地址需要学员根据自己的电脑的ip设置。

 在Ubuntu1上执行命令:ping Ubuntu2,若能ping通,则说明执行正确。


8SSH无密码验证配置(如何使一个虚拟机无密码登录另一个虚拟机?)

  两个虚拟机分别 安装ssh服务器,默认安装了ssh客户端:sudo apt-get install openssh-server;(使用xshell时必须要安装openssh-server程序

   在Ubuntu1上生成公钥和秘钥:ssh-****** -t rsa -P "" ;

   查看路径 /home/hduser/.ssh文件里是否有id_rsa和id_rsa.pub;
   将公钥赋给authorized_keys:cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys;

   无密码登录:ssh localhost;

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

此处要输入: yes ,不能直接回车

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

   首次通过密码登陆到Ubuntu2:在Ubuntu1上执行:ssh-copy-id Ubuntu2,查看Ubuntu2的/home/hduser/.ssh文件里是否有authorized_keys;

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

   在Ubuntu1上执行命令:ssh Ubuntu2,直接切换到Ubuntu2 中

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

 

   若要使Ubuntu2无密码登录Ubuntu1,则在Ubutu2上执行上述相同操作即可。过程略

注:若无密码登录设置不成功,则很有可能是文件夹/文件权限问题,修改文件夹/文件权限即可。sudo chmod 777 “文件夹” 即可。


9Java环境配置

获取opt文件夹权限:sudo chmod 777 /opt

将java压缩包放在/opt/,root模式执行sudo ./jdk-6u45-linux-i586.bin

配置jdk的环境变量:sudo gedit /etc/profile,将一下内容复制进去并保存

(注意:必须要顶格复制粘贴 ,#java要顶行,export要顶行

   # java   

   export JAVA_HOME=/opt/jdk1.6.0_45

   export JRE_HOME=$JAVA_HOME/jre

   export CLASSPATH=$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH

   export PATH=$JAVA_HOME/bin:$JRE_HOME/bin:$PATH

   

   执行命令,使配置生效:source /etc/profile;(不需要sudo)

   执行命令:java -version,若出现java版本号,则说明安装成功。

 

10、hadoop全分布式集群安装伪分布式安装请看参考文档

10.1 安装

将hadoop压缩包hadoop-2.6.0.tar.gz放在/home/hduser目录下,并解压缩到本地,重命名为hadoop;配置hadoop环境变量,执行:sudo gedit /etc/profile,将以下复制到profile内:

#hadoop

export HADOOP_HOME=/home/hduser/hadoop

export PATH=$HADOOP_HOME/bin:$PATH

执行:source /etc/profile

易错点:(每行末尾不能有空格,空格也算字符,无法被source /etc/profile

[email protected]:/$ source /etc/profile
bash: export: `   ': not a valid identifier        以为复制粘贴后,第一个export 的末尾有空格,报错显示 空格是无效标识符
 

 

注意:Ubuntu1、ubuntu2都要配置以上步骤;

10.2 配置

主要涉及的配置文件有7个:都在/hadoop/etc/hadoop文件夹下,可以用gedit命令对其进行编辑。

(1)进去hadoop配置文件目录

cd  /home/hduser/hadoop/etc/hadoop/

 

(2)配置 hadoop-env.sh文件-->修改JAVA_HOME

gedit hadoop-env.sh

添加如下内容

# The java implementation to use.

export JAVA_HOME=/opt/jdk1.6.0_45

(3)配置 yarn-env.sh 文件-->>修改JAVA_HOME

添加如下内容

# some Java parameters

export JAVA_HOME=/opt/jdk1.6.0_45

(4)配置slaves文件-->>增加slave节点 

(删除原来的localhost)

添加如下内容

Ubuntu1

Ubuntu2

(5)配置 core-site.xml文件-->>增加hadoop核心配置

(hdfs文件端口是9000、file:/home/hduser/hadoop/tmp)

添加如下内容

<configuration>
 <property>
  <name>fs.defaultFS</name>
  <value>hdfs://Ubuntu1:9000</value>
 </property>

 <property>
  <name>io.file.buffer.size</name>
  <value>131072</value>
 </property>
 <property>
  <name>hadoop.tmp.dir</name>
  <value>file:/home/hduser/hadoop/tmp</value>
  <description>Abasefor other temporary directories.</description>
 </property>

<property>

 <name>hadoop.native.lib</name>
  <value>true</value>
  <description>Should native hadoop libraries, if present, be used.</description>
</property> 

</configuration>

(6)配置  hdfs-site.xml 文件-->>增加hdfs配置信息

(namenode、datanode端口和目录位置)

<configuration>
 <property>
  <name>dfs.namenode.secondary.http-address</name>
  <value>Ubuntu1:9001</value>
 </property>

  <property>
   <name>dfs.namenode.name.dir</name>
   <value>file:/home/hduser/hadoop/dfs/name</value>
 </property>

 <property>
  <name>dfs.datanode.data.dir</name>
  <value> file:/home/hduser/hadoop/dfs/data</value>
  </property>

 <property>
  <name>dfs.replication</name>
  <value>2</value>
 </property>

 <property>
  <name>dfs.webhdfs.enabled</name>
  <value>true</value>
 </property>
</configuration>

(7)配置  mapred-site.xml 文件-->>增加mapreduce配置

(使用yarn框架、jobhistory使用地址以及web地址)

<configuration>
  <property>
   <name>mapreduce.framework.name</name>
   <value>yarn</value>
 </property>
 <property>
  <name>mapreduce.jobhistory.address</name>
  <value>Ubuntu1:10020</value>
 </property>
 <property>
  <name>mapreduce.jobhistory.webapp.address</name>
  <value> Ubuntu1:19888</value>
 </property>
</configuration>

(8)配置   yarn-site.xml  文件-->>增加yarn功能

<configuration>
  <property>
   <name>yarn.nodemanager.aux-services</name>
   <value>mapreduce_shuffle</value>
  </property>
  <property>
   <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
   <value>org.apache.hadoop.mapred.ShuffleHandler</value>
  </property>
  <property>
   <name>yarn.resourcemanager.address</name>
   <value>Ubuntu1:8032</value>
  </property>
  <property>
   <name>yarn.resourcemanager.scheduler.address</name>
   <value>Ubuntu1:8030</value>
  </property>
  <property>
   <name>yarn.resourcemanager.resource-tracker.address</name>
   <value>Ubuntu1:8035</value>
  </property>
  <property>
   <name>yarn.resourcemanager.admin.address</name>
   <value>Ubuntu1:8033</value>
  </property>
  <property>
   <name>yarn.resourcemanager.webapp.address</name>
   <value>Ubuntu1:8088</value>
  </property>

</configuration>

9将配置好的Ubuntu1中/hadoop/etc/hadoop文件夹复制到到Ubuntu2对应位置(删除Ubuntu2原来的文件夹/hadoop/etc/hadoop)

scp -r /home/hduser/hadoop/etc/hadoop/ [email protected]:/home/hduser/hadoop/etc/

10.3 验证

下面验证Hadoop配置是否正确:

1格式化namenode:

[email protected]:~$ cd hadoop

[email protected]:~/hadoop$ ./bin/hdfs namenode -format

[email protected]:~$ cd hadoop

[email protected]:~/hadoop$ ./bin/hdfs namenode -format

注意:上面只要出现“successfully formatted”就表示成功了。

(2)启动hdfs:

[email protected]:~/hadoop$ ./sbin/start-dfs.sh

15/04/27 04:18:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

Starting namenodes on [Ubuntu1]

Ubuntu1: starting namenode, logging to /home/hduser/hadoop/logs/hadoop-hduser-namenode-Ubuntu1.out

Ubuntu1: starting datanode, logging to /home/hduser/hadoop/logs/hadoop-hduser-datanode-Ubuntu1.out

Ubuntu2: starting datanode, logging to /home/hduser/hadoop/logs/hadoop-hduser-datanode-Ubuntu2.out

Starting secondary namenodes [Ubuntu1]

Ubuntu1: starting secondarynamenode, logging to /home/hduser/hadoop/logs/hadoop-hduser-secondarynamenode-Ubuntu1.out

15/04/27 04:19:07 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

 

查看java进程(Java Virtual Machine Process Status Tool)

[email protected]:~/hadoop$ jps

8008 NameNode

8443 Jps

8158 DataNode

8314 SecondaryNameNode

(3)停止hdfs:

[email protected]:~/hadoop$ ./sbin/stop-dfs.sh

Stopping namenodes on [Ubuntu1]

Ubuntu1: stopping namenode

Ubuntu1: stopping datanode

Ubuntu2: stopping datanode

Stopping secondary namenodes [Ubuntu1]

Ubuntu1: stopping secondarynamenode

查看java进程

[email protected]:~/hadoop$ jps

8850 Jps

(4)启动yarn:

[email protected]:~/hadoop$ ./sbin/start-yarn.sh

starting yarn daemons

starting resourcemanager, logging to /home/hduser/hadoop/logs/yarn-hduser-resourcemanager-Ubuntu1.out

Ubuntu2: starting nodemanager, logging to /home/hduser/hadoop/logs/yarn-hduser-nodemanager-Ubuntu2.out

Ubuntu1: starting nodemanager, logging to /home/hduser/hadoop/logs/yarn-hduser-nodemanager-Ubuntu1.out

 

查看java进程

[email protected]:~/hadoop$ jps

8911 ResourceManager

9247 Jps

9034 NodeManager

(5)停止yarn:

[email protected]:~/hadoop$  ./sbin/stop-yarn.sh

stopping yarn daemons

stopping resourcemanager

Ubuntu1: stopping nodemanager

Ubuntu2: stopping nodemanager

no proxyserver to stop

查看java进程

[email protected]:~/hadoop$ jps

9542 Jps

(6)查看集群状态:

首先启动集群:./sbin/start-dfs.sh

[email protected]:~/hadoop$ ./bin/hdfs dfsadmin -report

Configured Capacity: 39891361792 (37.15 GB)

Present Capacity: 28707627008 (26.74 GB)

DFS Remaining: 28707569664 (26.74 GB)

DFS Used: 57344 (56 KB)

DFS Used%: 0.00%

Under replicated blocks: 0

Blocks with corrupt replicas: 0

Missing blocks: 0

 

-------------------------------------------------

Live datanodes (2):

 

Name: 192.168.159.132:50010 (Ubuntu2)

Hostname: Ubuntu2

Decommission Status : Normal

Configured Capacity: 19945680896 (18.58 GB)

DFS Used: 28672 (28 KB)

Non DFS Used: 5575745536 (5.19 GB)

DFS Remaining: 14369906688 (13.38 GB)

DFS Used%: 0.00%

DFS Remaining%: 72.05%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)

Cache Remaining: 0 (0 B)

Cache Used%: 100.00%

Cache Remaining%: 0.00%

Xceivers: 1

Last contact: Mon Apr 27 04:26:09 PDT 2015

 

Name: 192.168.159.131:50010 (Ubuntu1)

Hostname: Ubuntu1

Decommission Status : Normal

Configured Capacity: 19945680896 (18.58 GB)

DFS Used: 28672 (28 KB)

Non DFS Used: 5607989248 (5.22 GB)

DFS Remaining: 14337662976 (13.35 GB)

DFS Used%: 0.00%

DFS Remaining%: 71.88%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)

Cache Remaining: 0 (0 B)

Cache Used%: 100.00%

Cache Remaining%: 0.00%

Xceivers: 1

Last contact: Mon Apr 27 04:26:08 PDT 2015

(7)查看hdfs:http://Ubuntu1:50070/

如何在MVWare+Ubuntu环境下搭建Hadoop完全分布式?

、运行wordcount程序

(1)创建 file目录

[email protected]:~$ mkdir file

(2)在file创建file1.txt、file2.txt并写内容(在图形界面)

分别填写如下内容

file1.txt输入内容:Hello world hi HADOOP

file2.txt输入内容:Hello hadoop hi CHINA

创建后查看:

[email protected]:~ /hadoop $ cat file/file1.txt

Hello world hi HADOOP

[email protected]:~ /hadoop $ cat file/file2.txt

Hello hadoop hi CHINA 

3在hdfs创建/input2目录

[email protected]:~/hadoop$ ./bin/hadoop fs -mkdir /input2

(4)将file1.txt、file2.txt文件copy到hdfs /input2目录

[email protected]:~/hadoop$ ./bin/hadoop fs -put file/file*.txt /input2

(5)查看hdfs上是否有file1.txt、file2.txt文件

[email protected]:~/hadoop$ bin/hadoop fs -ls /input2/

Found 2 items

-rw-r--r--   2 hduser supergroup         21 2015-04-27 05:54 /input2/file1.txt

-rw-r--r--   2 hduser supergroup         24 2015-04-27 05:54 /input2/file2.txt

(6)执行wordcount程序

先启动hdfs和yarn

 

[email protected]:~/hadoop$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount /input2/ /output2/wordcount1

15/04/27 05:57:17 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

15/04/27 05:57:17 INFO client.RMProxy: Connecting to ResourceManager at Ubuntu1/192.168.159.131:8032

15/04/27 05:57:19 INFO input.FileInputFormat: Total input paths to process : 2

15/04/27 05:57:19 INFO mapreduce.JobSubmitter: number of splits:2

15/04/27 05:57:19 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1430138907536_0001

15/04/27 05:57:20 INFO impl.YarnClientImpl: Submitted application application_1430138907536_0001

15/04/27 05:57:20 INFO mapreduce.Job: The url to track the job: http://Ubuntu1:8088/proxy/application_1430138907536_0001/

15/04/27 05:57:20 INFO mapreduce.Job: Running job: job_1430138907536_0001

15/04/27 05:57:32 INFO mapreduce.Job: Job job_1430138907536_0001 running in uber mode : false

15/04/27 05:57:32 INFO mapreduce.Job:  map 0% reduce 0%

15/04/27 05:57:43 INFO mapreduce.Job:  map 100% reduce 0%

15/04/27 05:57:58 INFO mapreduce.Job:  map 100% reduce 100%

15/04/27 05:57:59 INFO mapreduce.Job: Job job_1430138907536_0001 completed successfully

15/04/27 05:57:59 INFO mapreduce.Job: Counters: 49

File System Counters

FILE: Number of bytes read=84

FILE: Number of bytes written=317849

FILE: Number of read operations=0

FILE: Number of large read operations=0

FILE: Number of write operations=0

HDFS: Number of bytes read=247

HDFS: Number of bytes written=37

HDFS: Number of read operations=9

HDFS: Number of large read operations=0

HDFS: Number of write operations=2

Job Counters

Launched map tasks=2

Launched reduce tasks=1

Data-local map tasks=2

Total time spent by all maps in occupied slots (ms)=16813

Total time spent by all reduces in occupied slots (ms)=12443

Total time spent by all map tasks (ms)=16813

Total time spent by all reduce tasks (ms)=12443

Total vcore-seconds taken by all map tasks=16813

Total vcore-seconds taken by all reduce tasks=12443

Total megabyte-seconds taken by all map tasks=17216512

Total megabyte-seconds taken by all reduce tasks=12741632

Map-Reduce Framework

Map input records=2

Map output records=8

Map output bytes=75

Map output materialized bytes=90

Input split bytes=202

Combine input records=8

Combine output records=7

Reduce input groups=5

Reduce shuffle bytes=90

Reduce input records=7

Reduce output records=5

Spilled Records=14

Shuffled Maps =2

Failed Shuffles=0

Merged Map outputs=2

GC time elapsed (ms)=622

CPU time spent (ms)=2000

Physical memory (bytes) snapshot=390164480

Virtual memory (bytes) snapshot=1179254784

Total committed heap usage (bytes)=257892352

Shuffle Errors

BAD_ID=0

CONNECTION=0

IO_ERROR=0

WRONG_LENGTH=0

WRONG_MAP=0

WRONG_REDUCE=0

File Input Format Counters

Bytes Read=45

File Output Format Counters

Bytes Written=37

 

(7)查看运行结果

[email protected]:~/hadoop$ ./bin/hdfs dfs -cat /output2/wordcount1/*

CHINA 1

Hello 2

hadoop 2

hi    2

world 1

 

 

 

 

——————————————

显示出以上结果,表明您已经成功安装了Hadoop!