最最最基础的排序大算法
技术篇,话不多说,代码走起。
时间复杂度统计:
1.冒泡排序
算法规则:由于算法每次都将一个最大的元素往上冒,我们可以将待排序集合(0...n)看成两部分,一部分为(k..n)的待排序unsorted集合,另一部分为(0...k)的已排序sorted集合,每一次都在unsorted集合从前往后遍历,选出一个数,如果这个数比其后面的数大,则进行交换。完成一轮之后,就肯定能将这一轮unsorted集合中最大的数移动到集合的最后,并且将这个数从unsorted中删除,移入sorted中。
代码截图:
运行结果:
2.选择排序
算法规则:将待排序集合(0...n)看成两部分,在起始状态中,一部分为(k..n)的待排序unsorted集合,另一部分为(0...k)的已排序sorted集合,在待排序集合中挑选出最小元素并且记录下标i,若该下标不等于k,那么 unsorted[i] 与 sorted[k]交换 ,一直重复这个过程,直到unsorted集合中元素为空为止。
代码截图:
运行结果:
3.快速排序
算法规则:快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为较小和较大的2个子序列,然后递归地排序两个子序列。
步骤为:
挑选基准值:从数列中挑出一个元素,称为“基准”(pivot),
分割:重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(与基准值相等的数可以到任何一边)。在这个分割结束之后,对基准值的排序就已经完成,
递归排序子序列:递归地将小于基准值元素的子序列和大于基准值元素的子序列排序。
递归到最底部的判断条件是数列的大小是零或一,此时该数列显然已经有序。
代码截图:
运行结果:
4.插入排序
算法规则:
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
1.从第一个元素开始,该元素可以认为已经被排序
2.取出下一个元素,在已经排序的元素序列中从后向前扫描
3.如果该元素(已排序)大于新元素,将该元素移到下一位置
4.重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
5.将新元素插入到该位置后
6.重复步骤2~5
代码截图: