Spark源码分析8-client 如何选择将task提交给那个excutor
spark中很重要的一点就是task具体分配到哪个excutor上执行,如果分配不合理,将会消耗很多额外的资源。例如:executor1用flume receiver接收到数据,并将数据保存到block1上,excutor2用flume receiver接收到数据,并将数据保存到block2上。RDD将有两个patition,将对应产生两个task. task1处理block1,task2处理block2.如果将 task1分配到excutor2上去处理,那么excutor2将需要从excutor1上拿到block1,然后再计算,这样就加重 了数据传输的消耗。那么spark是如何来选择的呢?spark是通过RDD的getPreferredLocations来确定某一个partition期望分配到哪个executor的。下面这个流程图中显示在创建Task的时候会先调用getPreferredLocations()这个函数获取当前patition的期望运行的位置,在addPendingTask()函数中预先将task加到各个列表中
以下是具体的代码,以及例子
//通过resourceOffers来为每个work确定需要提交的task。
def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
var launchedTask = false
// TaskLocality.values is PROCESS_LOCAL, NODE_LOCAL, RACK_LOCAL, ANY
for (taskSet <- sortedTaskSets; maxLocality <- TaskLocality.values) {
do {
launchedTask = false
for (i <- 0 until offers.size) {
val execId = offers(i).executorId
val host = offers(i).host
for (task <- taskSet.resourceOffer(execId, host, availableCpus(i), maxLocality)) {
tasks(i) += task
val tid = task.taskId
taskIdToTaskSetId(tid) = taskSet.taskSet.id
taskIdToExecutorId(tid) = execId
activeExecutorIds += execId
executorsByHost(host) += execId
availableCpus(i) -= 1
launchedTask = true
}
}
} while (launchedTask)
}
}
//按照传入的maxLocality和AllowedLocalityLevel for current time来确定allowedLocality
def resourceOffer(
execId: String,
host: String,
availableCpus: Int,
maxLocality: TaskLocality.TaskLocality)
: Option[TaskDescription] =
{
if (!isZombie && availableCpus >= CPUS_PER_TASK) {
val curTime = clock.getTime()
// get the allowed locality level for current time
var allowedLocality = getAllowedLocalityLevel(curTime)
if (allowedLocality > maxLocality) {
allowedLocality = maxLocality // We're not allowed to search for farther-away tasks
}
findTask(execId, host, allowedLocality) match {
case Some((index, taskLocality)) => {
// Found a task; do some bookkeeping and return a task description
…
return Some(new TaskDescription(taskId, execId, taskName, index, serializedTask))
}
case _ =>
}
}
None
}
private def findTask(execId: String, host: String, locality: TaskLocality.Value)
: Option[(Int, TaskLocality.Value)] =
{
for (index <- findTaskFromList(getPendingTasksForExecutor(execId))) {
return Some((index, TaskLocality.PROCESS_LOCAL))
}
if (TaskLocality.isAllowed(locality, TaskLocality.NODE_LOCAL)) {
for (index <- findTaskFromList(getPendingTasksForHost(host))) {
return Some((index, TaskLocality.NODE_LOCAL))
}
}
if (TaskLocality.isAllowed(locality, TaskLocality.RACK_LOCAL)) {
for {
rack <- sched.getRackForHost(host)
index <- findTaskFromList(getPendingTasksForRack(rack))
} {
return Some((index, TaskLocality.RACK_LOCAL))
}
}
// Look for no-pref tasks after rack-local tasks since they can run anywhere.
for (index <- findTaskFromList(pendingTasksWithNoPrefs)) {
return Some((index, TaskLocality.PROCESS_LOCAL))
}
if (TaskLocality.isAllowed(locality, TaskLocality.ANY)) {
for (index <- findTaskFromList(allPendingTasks)) {
return Some((index, TaskLocality.ANY))
}
}
// Finally, if all else has failed, find a speculative task, speculative task is some task that run slowly, then we may consider to run this task on other executor of other host
findSpeculativeTask(execId, host, locality)
}
具体的示例
Task 1 – 50 prefer Location is excutor2
Two work: excutor1 core1 core2
excutor2 core3 core4
Schedule task every 1 second
TaskSetManager
myLocalityLevels = Process_Local, Node_local, Any
Locality Wait = 3s 3s 0s
1s: localityForCurrentTime= process_local
maxLocality = PROCESS_LOCAL allowedLocality = PROCESS_LOCAL excutor1 = none excutor2=task1
maxLocality = NODE_LOCAL allowedLocality = PROCESS_LOCAL excutor1 = none excutor2=task2
maxLocality = RACK_LOCAL allowedLocality = PROCESS_LOCAL excutor1 = none excutor2= none (because core size is 2)
maxLocality = ANY allowedLocality = PROCESS_LOCAL excutor1 = none excutor2= none (because core size is 2)
If all task assign to excutor2 finished
2s: localityForCurrentTime = process_local
maxLocality = PROCESS_LOCAL allowedLocality = PROCESS_LOCAL excutor1 = none excutor2=task3
maxLocality = NODE_LOCAL allowedLocality = PROCESS_LOCAL excutor1 = none excutor2=task4
maxLocality = RACK_LOCAL allowedLocality = PROCESS_LOCAL excutor1 = none excutor2= none (because core size is 2)
maxLocality = ANY allowedLocality = PROCESS_LOCAL excutor1 = none excutor2= none (because core size is 2)
If all task assign to excutor2 finished
3s: localityForCurrentTime = Node_local (because localityWait for Process_Local is 3s)
maxLocality = PROCESS_LOCAL allowedLocality = PROCESS_LOCAL excutor1 = none excutor2=task5
maxLocality = NODE_LOCAL allowedLocality = Node_local excutor1 = none excutor2=task6
maxLocality = RACK_LOCAL allowedLocality = Node_local excutor1 = none excutor2= none (because core size is 2)
maxLocality = ANY allowedLocality = Node_local excutor1 = none excutor2= none (because core size is 2)
…
6s: localityForCurrentTime = Any (because localityWait for Node_local is 3s)
maxLocality = PROCESS_LOCAL allowedLocality = PROCESS_LOCAL excutor1 = none excutor2=task11
maxLocality = NODE_LOCAL allowedLocality = NODE_LOCAL excutor1 = none excutor2=task12
maxLocality = RACK_LOCAL allowedLocality = RACK_LOCAL excutor1 = none excutor2= none
maxLocality = ANY allowedLocality = ANY excutor1 = task13 excutor2= none (allowedLocality change to ANY,now can find task from allPendingTasks list for excutor1)
总结:1. task的选择主要依赖allowedLocality,以及task的prefer location
2.task不是一定会分配到数据所在的那台机器上,如果有台机器长时间都没有可执行的task,它会从allPendingTasks列表里面找一个task