Object detection[NMS] 潜在矩形筛选代码 学习
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
from itertools import cycle
cycol = cycle('bgrcmk')
# 数据准备
dets = np.random.rand(3, 5) + [0,0,1,1,0]
dets /= 2 # 这个是为了可以在图里画出来。
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
for i in range(dets.shape[0]):
a,b,c,d,e = dets[i]
plt.gca().add_patch(
plt.Rectangle((a,b),c - a,d - b, facecolor = 'green', fill = False,
edgecolor='r', linewidth=3)
)
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1) # n x 1
print areas.shape, areas
order = scores.argsort()[::-1] # n x 1
print order
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
# 以置信度最高的 x_bottom_left 为标准,找不小于它的
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
for i in range(len(xx1)):
plt.gca().add_patch(
plt.Rectangle((xx1[i],yy1[i]),xx2[i] - xx1[i],yy2[i]- yy1[i], facecolor = 'black', fill = False,
edgecolor=cycol.next(), linewidth=3)
)
# 计算置信度最大的矩形与其它矩形相交的面积
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
# 计算 Intersection over Union(IoU)
ovr = inter / (areas[i] + areas[order[1:]] - inter)
# 获得 从 order[1] 开始的所有满足条件的矩形的下标
inds = np.where(ovr <= thresh)[0]
# 因为 order[0] 已经包含在 keep 里面了,所以 inds 要做一个向右的 1 的偏移。
order = order[inds + 1]
plt.show()
return keep
py_cpu_nms(dets, 1)
因为数据是随机生成的,所以上面代码运行的结果可能和下图不同。