超简单的keras函数模型教程
from keras.models import Model
from keras.layers import Input, Dense, Lambda
a = Input(shape=(640, 480, 3))
b = Input(shape=(23,))
c = Input(shape=(54,))
d = Dense(32)(b)
multi = Lambda(lambda x: x**3)
e = multi(c)
model_mine = Model(inputs=[a, b, c], outputs=[d, e])
model_mine.summary()
multi是个layer类
abcde都是tensor
model_mine是model类。
最后一句是打印。
没有数据,代码调试:
看一下每个变量的类型:
代码输出:
Using TensorFlow backend.
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_2 (InputLayer) (None, 23) 0
__________________________________________________________________________________________________
input_3 (InputLayer) (None, 54) 0
__________________________________________________________________________________________________
dense_1 (Dense) (None, 32) 768 input_2[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda) (None, 54) 0 input_3[0][0]
==================================================================================================
Total params: 768
Trainable params: 768
Non-trainable params: 0
________________________________________________
之前打了很多字都没了。先这样吧。就是model建立需要指定输入输出的tensor.输入输出之间要用layer建立联系。
Dense是全连接
Lambda是自己建立layer对象。这里建立的是立方函数。x=[2,3]讲过multi这个layer会变成[8,27].