Airbnb实时搜索个性化排序中的Embedding(长期兴趣待补充完)
目录
一、背景介绍
1、Airbnb介绍
论文:Real-time Personalization using Embeddings for Search Ranking at Airbnb
https://www.kdd.org/kdd2018/accepted-papers/view/real-time-personalization-using-embeddings-for-search-ranking-at-airbnb
参考:https://mp.weixin.qq.com/s/oJUzrZP_cxhiarq0w9Yqpg
2、Airbnb搜索
3、房主host和客人guest的交互行为
guest:click listing(点击)
guest:book listing(预定)
contact host(联系)
host:accept/reject(host对guest的预定请求)
accept/reject/no response(host对guest的联系请求)
二、论文简介
为了捕捉用户长期和短期的兴趣,不是简单的将用户的历史行为作为特征,而是将用户和行为进行embedding,再根据embedding的结果得到多个feature。论文就是介绍如何根据用户和行为listing,如何进行embedding的过程。
(1)短期兴趣:基于click listing生成listing的embedding。
目的:listing的相似推荐,实时个性化推荐
(2)长期兴趣:基于book listing生成user-type和listing-type的embedding。
目的:捕捉用户的长期兴趣。由于点稀疏,因此通过对user-type和book-type进行聚合,形成2个embedding对象。
1、短期兴趣
(1)listing序列的形成
一个是只有停留时间超过 30s 的 listing page 才被算作序列中的一个数据点,二是如果用户超过 30 分钟没有动作,那么这个序列会断掉,不再是一个序列。
(2)embedding方法框架:word2vec 的 skip-gram model
2、长期兴趣(待补充)
user-type和book-type进行聚合