數據庫索引
创建索引可以大大提高系统的性能。
第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢?因为,增加索引也有许多不利的方面。
第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。
第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。
第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。
U2FsdGVkX1936d5QoNqYaByBS0yEBVQep/u2WUW3yOjjl9+PKLqXnY8zSWQI7eVa
ztbonJIwjW7HUsDmudfhmW8uGW9VWPatL163SPH1TwAzzuwX8gXbhWpIvduEGI6w
VJR/Zg4OVUnnm691zX9mciVQe/blW+TsEOcbz20Lk90zU0z+2XWMo9H3CdOfUej3
K6He1blzw9n/j/IH1AzaJg9XK8ALjUdM4sxPJyYUKIWApysLRo7oH9KOrXwjKO1O
vkPasK0dY3iHhf6cAmb+LWJngGmhn68H+bA8fGy40HFOt64GKJcC2A9o5SWtOkYg
cN4GFRNWQaxg1DBihfxerWU6OYtH8mPmI+BHE9GqizmkyGHTPFxyUtGSyzza8Ml3
q8zgIPWVn7leHMw2kJAoBxg93ILBJYN3KXg4w6/9U2t8ngZu/RcVur+nEZu2xBzm
VCyPxOUVL5S0x+QzuAXgSLJIy/GLBvPiUo9cjq9GiUoK4NeJxGFRXXvYt348wFks
T1J8pb6U6W2AA4O4djoooU8XPqFPmejcRVLGBoJxYvHwcORyDrs644DvEDeMR4Pk
W/VOewBRQilNAcHKFTdkcyj5K3Qe2n1ND/cdCzYe/7t7dF8kTQFEOjFhUqsTBFYO
ixpztLT284cmD6v/TWrCqX8kwT02YOJn5ZMs1/H+fVTYEEF8zhLeETi81nA9gw0D
PGGAj4wvZL2k8P8syPKLFxz9WAz2CJ0flw1aZV/KN8SGY2CxSuh3OeU4XVFqze0N
SQ/fIkZyUYxOBmJZgm6Tk7De14p3zcI6zLYo0BK/DO2PZ+VjPIUl5q5k11RPTrpm
ZD4L4L6AxYr+1Cu23mxn9Jidpd0C1/jPt4j6Q/AQC4CKOzIc6MVmNzSrzryZlmXx
0q90R11n4jYwNmBJKIzEQ3CizfNkkHoyW9noddluwJ4IIHJDpTmj5Bd1j6oZWFf6
Ji4BPBaFR4mxzQStH9qAQG+t5j17m3W3ZYUxrM1oPFfFBtTRrWkHkLVUjhRubfD2
7m1UvipEL8qXUJMncBS6AsIkOWmPGB1LQcs777agThOAtdlBhYVFS1XWYifi4TZL
EmrTZks9XXxI9B8D4OSnLpNUN/ggQQOxj8kbBdgB85qwleQHNwcDnUxW+3BnnFVn
BHHrxDhy14bdi8UdaszvK6W2MDGoDblgHd7mYDYwIM1osjUszq05rzwsQDC77vKr
2X6FknHwvqkqDcNixJ5bulaGHtQU1xX5YsOr/QFbdVENWv3yPesXzB8SWkyyrs4k
YHiVddSFqiYW8KJ+EuuEAm4H32vA/Y7Lh1YOO06uIrkT2yic+hOZMA+mL0h4+vcz
TsGSXPTZOlbWUW+y7KBv//+1cbiq/+EVYY9d4bqsl6T7I2Q7uh5Yb2PpKMFuBRv5
HY14MJMghSHhUwO0nr8IdmPNNaWwplaYnqI5LH/XPXOLVxDfSYl0XC3t4yp1ZLID
q5+inr1EVBE5HCBkqxZccOk/NxH4KSYEXVRDHqNs4u/lDhag7HpsSHjuZgIFy2tB
707LtQIJZtvd8xGKZVVyxCUB7XjI+l36Gwfq322+XXdYfVJVP17jY01CGAYb7Gpz
QmygODY4t3ybpU2M/D9s5Oi1xzTw/LWCyQIcaXWqArHC6bYk4f/zIwIdGjDZYWet
o8JbI0TeJGRanUBQK5ik5DPU481Z9qO5gFIO9m4v65A5pfsp3Z23eZvQtqnYPSSH
Bu9wTOUpG3Z1EPn+d1srCAy921jAXUTIkEpLWtd3e5XHrxwKkdtphBkH6tUZWk6s
xgQ8lqVHKMJdlTE70rNN5cRUUf9xLEWLPLaiiWKymIAPG06dbeV73wAm6n182neH
BlgH6TG2uDuxyVtmYtcip16y/ZT2FL0iOPpwwNo8nfVJj2saGBVq/ZZ873exqalh
YlwN+KSlLayTpOLzWfVPHaeWSoQfIulPWSKHri9s7jPegcNaywDnSgr9+ALFoLL2
e+5giKEBF6265TQeSqnqcc1G3MPiJgsFYOp3wD8f7n6QB1+EBlHOeeWCkGAVq9QV
IxqNPe50565jAu7wZXP8CQNlIRJdXuij3TmgJtWakMAop6pZMX3Tt4pVYRpSHHrW
XxOlI5dMq7N/q8eFmeKyC2qlfxjW8gUcucTZM6wciIS08HuW/Ovq+HrtAdvRCqd2
91T/rEGAhgEH1KQe7uP3/3Z3jE7AdOll9xh3CLs2OuppqB3fegBCpyaYnZnXzvbg
StPcnf0h2+mo6YIFoP8bK+0TXXCRTq9PUfe4V2yZfVUbxYjuCx7huXmUdo4C90q1
MyW05/MimStDOaUt+vOhHG7CsIN8KTkwTZkvVqM4nCKv3srtIz/WRiGxRYFkE64K
Lt04UFPFLqIx6kZA+pcrgUjM43ttlVpeKYTJzKioql37zQX18kMajBMeimXuVm+p
rxMf3WoYFzZS40tS/yz9x+xCwvMT/ZT3Z+TQlaKsuQJ7BjHabyqJbTAiqGnQaHtO
VekzOnnGJOQndG8uYOTQV73fNtjY8Te7TlabLVoGkyHwbvRzLEz9A8sYsBD5qxEm
+FzTGc9v2cd843hfGVaDoG8S5In6yzSDtzcpuZO2GYdtNAsZnRB0jsj909syoN1m
ABZzaPQkut8oZpOlN/Vl6iUK1LodBwE0FGFEk3qaE+AdKMJb1StVcf1eJnLWNQjI
bh4XWvghMrhlOrgvOQOD/okv6HevQv2ECccseLhdRW62tyatRaF4gE7bVn6hZTRk
ltluEB27powgVerfMTbPE3nN3BDIJa7gAii+oNslt5627PTX5CoTahS7tmwQDDJL
x2RCeHWWUEuI9Ec0ot9ArgCglyXKtibseR1tGhV886ZyS2dUHC3sHwb3IVtjwa+n
iRZK+zsLA9zDRcGVjRjOoBopsvy5aQedUV23AzmXOaC6rKQG15u+V7IYzzxIaAoE
kXMLS3r9DFZ5rWoTaVvSI10nzsTkHiTv7lib4VawqJ4hfenese4LixvnD5y6z+55
NHYqjB128YD7BPEAiBji26KyJzJByjfPPO+WsWYNYQ66fzl9bOiwEEBtGayc8CTt
8ML1OQ+E6XxnX9cUgnxbG93h2Ys77qA/L4TArcrR9r5u93W8KWka1oe9uzIAUMzj
/oABXwjNvbrWM3kSYkt4dzfaRM4IOE0CLLhF8vsoN+QIvB3m8IYYUWpwkDs4lJ+i
Iggb9gp2tAOyYPk0rQLM/DoDkP2ZtpUMklFmhLzixcpvPyBqjfStfPVp1+xFr6Va
tp0Z7bMz/y4WjAAsVKxpI4x7usBZlqKTFJAzR9lt4Sy1Px51QFRG6aadlRsnNuzu
bqkI1hMadKvKMARhla5Yn/+1CqJxKc97OtHC0vr69W385n6kAsbTkOsioLa/8Sdi
Jn/Zxf7SSZH5GGunBSE/GYowSsD/OEM/WjwJT7YI++2yKCiqsGkROXTFZfn1FOfM
Tz6qobIlXljwMB/j/0GNp6B2HdO9fgJ8JkOBG69pBjCWHm40yTQElubc5AO6iJ5K
9veBuMi4Vacz9YrKyPPaRGVaJW5XnOT1aWZ9qb39h0bWv5cl7Qz9eEImdoy7zUnt
34OeN85Wxk+VdKwEhg6ep3W7/kaXE1VCJcBuvAXAIlh9bE8Pt4iSa0f31fxVRVXI
Q3JHg8txm8Wnaaz36u+2WsbJahuhmA32a59oJqaYxHQrlsHQ3LaKT0q54kolooFN
jr1Sa/5Llx9CWbWTqlbgzdKgFhJHUnqGmUQqzc2u4wwhKtLcX6s0e6/5mF+yU6QT
/XmjsN+asg7w+y3zxlaVTO3d1N+e+TdLeht5px3Qj4RY3O6cm3PfAhmfZ+egg3Ki
15zgAs08DkxWWvBvcfI4TOhfW0KLbWbIlSvDFMmKoA42FqEZef2iaPQ17IPRQA9W
j346PR5XWkyVONNJjhGB4DQA2D5HcugMvVjJ+49hfqegMeCTDgA0lYLzdMrrBe2Z
MUaQlkdUQ9/5V+Jr5LN/bFUQI+hGFRSnvZ/QiOcCHtk=