PTA-L3-2 水果忍者 (30 分)(凸包+枚举)
题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805049102811136
题目大意:中文体,很清楚。看网上这道题的题解很少,就写一份吧。
思路:这道题开始拿到确实不好想。看题解说可以使用凸包。顿时茅塞顿开。比如样例:将上下两个点分来来看。分别求出上面点集的凸包和下面点集的凸包。
我们只需要凸包的一部分就行了。就是上面(红色)的下半凸壳和下面(蓝色)的上半凸壳。答案的直线必定在这两个凸壳之间。
现在是不是很清楚了?但是得到凸壳后呢?毕竟凸壳好得到(板子),
之后我们发现,必定存在一组与凸壳上的线段平行的直线,可以贯穿中间的通道,我们只需要找到那个线段就行了。
至于怎么找,蒟蒻的我只能选择枚举了(QAQ)枚举所有凸壳上的线段,然后判断与另一个凸壳是否满足一个在上面一个在下面。
好了,直接看代码吧。
ACCode:
// luogu-judger-enable-o2
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<time.h>
#include<map>
#include<set>
#include<deque>
#include<queue>
#include<stack>
#include<bitset>
#include<string>
#include<fstream>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define Pair pair<ll,int>
//#define max(a,b) (a)>(b)?(a):(b)
//#define min(a,b) (a)<(b)?(a):(b)
#define clean(a,b) memset(a,b,sizeof(a))// 水印
//std::ios::sync_with_stdio(false);
// register
const int MAXN=1e4+10;
const int INF32=0x3f3f3f3f;
const ll INF64=0x3f3f3f3f3f3f3f3f;
const ll mod=192600817;
const double EPS=1.0e-8;
const double PI=acos(-1.0);
struct Point{
double x,y,t,d;
Point(double _x=0,double _y=0,double _t=0,double _d=0){
x=_x;y=_y;t=_t;d=_d;
}
friend Point operator + (const Point &a,const Point &b){
return Point(a.x+b.x,a.y+b.y);
}
friend Point operator - (const Point &a,const Point &b){
return Point(a.x-b.x,a.y-b.y);
}
friend double operator ^ (Point a,Point b){//???????
return a.x*b.y-a.y*b.x;
}
friend int operator == (const Point &a,const Point &b){
return fabs(a.x-b.x)<EPS&&fabs(a.y-b.y)<EPS;
}
friend double operator * (const Point &a,const Point &b){
return a.x*b.x+a.y*b.y;
}
};
struct V{
Point start,end;double ang;
V(Point _start=Point(0,0),Point _end=Point(0,0),double _ang=0.0){
start=_start;end=_end;ang=_ang;
}
friend V operator + (const V &a,const V &b){
return V(a.start+b.start,a.end+b.end);
}
friend V operator - (const V &a,const V &b){
return V(a.start-b.start,a.end-b.end);
}
};
Point Dots1[MAXN],Dots2[MAXN];
Point Stk[MAXN];int Top;
int n;
double Distance(Point a,Point b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double Parellel(double key){
return fabs(key)<EPS?0:key;
}
int Cmp(Point a,Point b){
if(a.x==b.x) return a.y<b.y;
return a.x<b.x;
}
void Jarvis1(){
sort(Dots1+1,Dots1+1+n,Cmp);
Top=2;Stk[1]=Dots1[1];Stk[2]=Dots1[2];
for(int i=3;i<=n;++i){
while(Top>=2&&((Dots1[i]-Stk[Top])^(Stk[Top]-Stk[Top-1]))>=0) --Top;
Stk[++Top]=Dots1[i];
}
}
void Jarvis2(){
sort(Dots2+1,Dots2+1+n,Cmp);
Top=2;Stk[1]=Dots2[1];Stk[2]=Dots2[2];
for(int i=3;i<=n;++i){
while(Top>=2&&((Dots2[i]-Stk[Top])^(Stk[Top]-Stk[Top-1]))<=0) --Top;
Stk[++Top]=Dots2[i];
}
}
int main(){
scanf("%d",&n);
double x,y1,y2;
for(int i=1;i<=n;++i){
scanf("%lf%lf%lf",&x,&y1,&y2);
Dots1[i]=Point(x,y1);Dots2[i]=Point(x,y2);
}
if(n==1){
printf("%.0lf %.0lf %.0lf %.0lf\n",Dots1[1].x-1,Dots1[1].y,Dots1[1].x+1,Dots1[1].y);
return 0;
}
if(n==2){
printf("%.0lf %.0lf %.0lf %.0lf\n",Dots1[1].x,Dots1[1].y,Dots1[2].x,Dots1[2].y);
return 0;
}Jarvis1();
for(int i=1;i<=Top;++i) Dots1[i]=Stk[i];int upn=Top;
Jarvis2();
for(int i=1;i<=Top;++i) Dots2[i]=Stk[i];int dwn=Top;//求得下凸和上凸
// for(int i=1;i<=upn;++i) cout<<Dots1[i].x<<" "<<Dots1[i].y<<endl;
// cout<<"nxt"<<endl;
// for(int i=1;i<=dwn;++i) cout<<Dots2[i].x<<" "<<Dots2[i].y<<endl;
int i,j;
for(i=1;i<upn;++i){
for(j=1;j<=dwn;++j){
if(((Dots1[i+1]^Dots1[i])+(Dots1[i]^Dots2[j])+(Dots2[j]^Dots1[i+1]))<0){//下面的点比上面的点还要高
break;
}
}if(j==dwn+1) break;
}
// cout<<i<<" "<<j<<endl;
Point ans1,ans2;
if(i==upn){
for(i=1;i<dwn;++i){
for(j=1;j<=upn;++j){
if(((Dots2[i+1]^Dots2[i])+(Dots2[i]^Dots1[j])+(Dots1[j]^Dots2[i+1]))>0){
break;
}
}if(j==upn+1) break;
}
ans1=Dots2[i];ans2=Dots2[i+1];
// cout<<i<<" "<<j<<endl;
// cout<<Dots2[i].x<<" "<<Dots2[i].y<<endl;
}
else{
ans1=Dots1[i];ans2=Dots1[i+1];
}printf("%.0lf %.0lf %.0lf %.0lf\n",ans1.x,ans1.y,ans2.x,ans2.y);
}
/*
2
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
*/