【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks

Aspect-based sentiment analysis with alternating coattention
networks

目录

  • introduction
  • method
  • experiments
  • conclusion and future work

introduction

ABSA任务包括两个子任务:方面检测和情感分析。
Coattention
-LSTM

Coattention-MemNet
Location-enhanced coattention

method

an overview of coattention networks
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
Coattention-LSTM:
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
context and target encoder:
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
coattention encoder:
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
coattention encoder:
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
Coattention-Memnet:
context and target encoder:
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
coattention encoder:
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
sentiment analysis:
与共Coattention- LSTM相似,使用softmax层作为分类器,交叉熵函数作为损失函数。
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
Location-enhance coattention:
Great food but the service was dreadful!
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks

experiments

数据集:SemEval 2014 和 Twitter
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
评价指标:【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
结果:【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks
【论文阅读笔记】Aspect-based sentiment analysis with alternating coattention networks

conclusion and future work

由于我们的方法使用LSTM或单词嵌入层来表示单词,注意只是一个加权和函数,因此很难学习到否定修饰词与隐含的情感短语之间的复杂关系。因此,我们需要改进LSTM或attention,使网络学习上下文词之间的复杂关系,或将注意层的结果以非线性的方式映射到分类空间。
在未来的工作中,作者计划设计一个上下文学习函数来捕捉局部上下文单词之间的关系,该关系的复杂度在单词嵌入和LSTM之间。我们还将考虑在网络中加入外部知识来解决否定修饰词建模和识别未知情绪词和短语的问题。