How to Compute The Derivatives (如何求导数)(TBC)

A video by 3Blue1Brown in Bilibili\text{A video by 3Blue1Brown in Bilibili}


I don’t have a systematic face to Derivatives before, but now I do.\text{I don't have a systematic face to Derivatives before, but now I do.}

The Derivative of a function is a function which equals to the slope of that\text{The Derivative of a function is a function which equals to the slope of that}function’s graph.\text{function's graph.}

1. The Derivative of Power Functions\text{1. The Derivative of Power Functions}

Let’s look at some simples.\text{Let's look at some simples.}

We can treat y=x2 to a square with side length x.\text{We can treat }y=x^2\text{ to a square with side length }x.
How to Compute The Derivatives (如何求导数)(TBC)
Let the side length becomes to (x+dx) so that the area increases (2xdx+dx2).\text{Let the side length becomes to }(x+dx)\text{ so that the area increases }(2x·dx+dx^2).

Because of the increment dx should be much smaller than x, so it’s safe to ignore the\text{Because of the increment }dx\text{ should be much smaller than }x,\text{ so it's safe to ignore the}terms those have dx2 or high power of dx.\text{terms those have }dx^2\text{ or high power of }dx.
Therefore, ΔS=2xdx. When dx0,ΔS2x.\text{Therefore, }\Delta S=2x·dx.\text{ When }dx\rightarrow0,\Delta S\rightarrow 2x.

And the same, consider the function y=x3.\text{And the same, consider the function }y=x^3.
We can treat it to a cube with a side length x.\text{We can treat it to a cube with a side length }x.
How to Compute The Derivatives (如何求导数)(TBC)
Let the side length becomes to (x+dx) so that the volume increases (3x2dx+3xdx2+dx3).\text{Let the side length becomes to }(x+dx)\text{ so that the volume increases }(3x^2·dx+3x·dx^2+dx^3).
As the same, we also let it be 3x2.\text{As the same, we also let it be }3x^2.


Actually, for a power function f(x)=xn, it goes\text{Actually, for a power function }f(x)=x^n,\text{ it goes}
f(x)=xnf(x+dx)=(x+dx)n=xn+nxn1dx+...f=Δf=f(x+dx)f(x)=nxn1\begin{aligned}f(x)&=x^n\\\\ f(x+dx)&=(x+dx)^n\\ &=x^n+nx^{n-1}dx+...\\\\ f'=\Delta f&=f(x+dx)-f(x)\\ &=nx^{n-1}\end{aligned}
Therefore, its dericatives f=nxn1.\text{Therefore, its dericatives }f'=nx^{n-1}.


To be continued.\text{To be continued.}