计算数字k在0到n中的出现的次数,k可能是0~9的一个值
先晒代码
当计算第k位包含x的个数时
一,取高位数字,成以10^(i-1),得到基础值;
二,对于第k位
大于x,结果为a+10^(i-1);
小于x,结果为a;
等于x,结果为a+低1位+1;
同时注意x=0的情况。
分析帮助:
以下分析文字转载于作者:CYJB
出处:http://www.cnblogs.com/cyjb/
GitHub:https://github.com/CYJB/
- 从 1 至 10,在它们的个位数中,任意的 X 都出现了 1 次。
- 从 1 至 100,在它们的十位数中,任意的 X 都出现了 10 次。
- 从 1 至 1000,在它们的千位数中,任意的 X 都出现了 100 次。
这个规律很容易验证,这里不再多做说明。
接下来以 $n=2593, X=5$ 为例来解释如何得到数学公式。从 1 至 2593 中,数字 5 总计出现了 813 次,其中有 259 次出现在个位,260 次出现在十位,294 次出现在百位,0 次出现在千位。
现在依次分析这些数据,首先是个位。从 1 至 2590 中,包含了 259 个 10,因此任意的 X 都出现了 259 次。最后剩余的三个数 2591, 2592 和 2593,因为它们最大的个位数字 3 < X,因此不会包含任何 5。
然后是十位。从 1 至 2500 中,包含了 25 个 100,因此任意的 X 都出现了 $25 \times 10=250$ 次。剩下的数字是从 2501 至 2593,它们最大的十位数字 9 > X,因此会包含全部 10 个 5。最后总计 250 + 10 = 260。
接下来是百位。从 1 至 2000 中,包含了 2 个 1000,因此任意的 X 都出现了 $2 \times 100=200$ 次。剩下的数字是从 2001 至 2593,它们最大的百位数字 5 == X,这时情况就略微复杂,它们的百位肯定是包含 5 的,但不会包含全部 100 个。如果把百位是 5 的数字列出来,是从 2500 至 2593,数字的个数与百位和十位数字相关,是 93+1 = 94。最后总计 200 + 94 = 294。
最后是千位。现在已经没有更高位,因此直接看最大的千位数字 2 < X,所以不会包含任何 5。到此为止,已经计算出全部数字 5 的出现次数。