面试必背——Redis缓存

redis

Redis 有哪些常见的功能?
  1. 数据缓存功能
  2. 分布式锁的功能
  3. 支持数据持久化
  4. 支持事务
  5. 支持消息队列
Redis 适合的场景
  1. 缓存:减轻 MySQL 的查询压力,提升系统性能;
  2. 排行榜:利用 Redis 的 SortSet(有序集合)实现;
  3. 计算器/限速器:利用 Redis 中原子性的自增操作,我们可以统计类似用户点赞数、用户访问数等。这类操作如果用 MySQL,频繁的读写会带来相当大的压力;限速器比较典型的使用场景是限制某个用户访问某个 API 的频率,常用的有抢购时,防止用户疯狂点击带来不必要的压力;
  4. 好友关系:利用集合的一些命令,比如求交集、并集、差集等。可以方便解决一些共同好友、共同爱好之类的功能;
  5. 消息队列:除了 Redis 自身的发布/订阅模式,我们也可以利用 List 来实现一个队列机制,比如:到货通知、邮件发送之类的需求,不需要高可靠,但是会带来非常大的 DB 压力,完全可以用 List 来完成异步解耦;
  6. Session 共享:Session 是保存在服务器的文件中,如果是集群服务,同一个用户过来可能落在不同机器上,这就会导致用户频繁登陆;采用 Redis 保存 Session 后,无论用户落在那台机器上都能够获取到对应的 Session 信息。
Redis 不适合的场景

数据量太大、数据访问频率非常低的业务都不适合使用 Redis,数据太大会增加成本,访问频率太低,保存在内存中纯属浪费资源。

redis的存储类型
  • String(字符串)SDS结构
  • List(列表) 链表
  • Hash(字典) 哈希表
  • Set(集合)
  • Sorted Set(有序集合)跳跃表
Redis 支持的数据类型详细介绍
  1. string 字符串
    字符串类型是 Redis 最基础的数据结构,首先键是字符串类型,而且其他几种结构都是在字符串类型基础上构建的。字符串类型实际上可以是字符串:简单的字符串、XML、JSON;数字:整数、浮点数;二进制:图片、音频、视频。
    使用场景:缓存、计数器、共享 Session、限速。
  2. Hash(哈希)
    在 Redis中哈希类型是指键本身是一种键值对结构,如 value={{field1,value1},…{fieldN,valueN}}
    使用场景:哈希结构相对于字符串序列化缓存信息更加直观,并且在更新操作上更加便捷。所以常常用于用户信息等管理,但是哈希类型和关系型数据库有所不同,哈希类型是稀疏的,而关系型数据库是完全结构化的,关系型数据库可以做复杂的关系查询,而 Redis 去模拟关系型复杂查询开发困难且维护成本高。
  3. List(列表)
    列表类型是用来储存多个有序的字符串,列表中的每个字符串成为元素,一个列表最多可以储存 2 ^ 32 - 1 个元素,在 Redis 中,可以队列表两端插入和弹出,还可以获取指定范围的元素列表、获取指定索引下的元素等,列表是一种比较灵活的数据结构,它可以充当栈和队列的角色。
    使用场景:Redis 的 lpush + brpop 命令组合即可实现阻塞队列,生产者客户端是用 lpush 从列表左侧插入元素,多个消费者客户端使用 brpop 命令阻塞式的“抢”列表尾部的元素,多个客户端保证了消费的负载均衡和高可用性。
    面试必背——Redis缓存
  4. Set(集合)
    集合类型也是用来保存多个字符串的元素,但和列表不同的是集合中不允许有重复的元素,并且集合中的元素是无序的,不能通过索引下标获取元素,Redis 除了支持集合内的增删改查,同时还支持多个集合取交集、并集、差集。合理的使用好集合类型,能在实际开发中解决很多实际问题。
    使用场景:如:一个用户对娱乐、体育比较感兴趣,另一个可能对新闻感兴趣,这些兴趣就是标签,有了这些数据就可以得到同一标签的人,以及用户的共同爱好的标签,这些数据对于用户体验以及曾强用户粘度比较重要。
  5. zset(sorted set:有序集合)
    有序集合和集合有着必然的联系,它保留了集合不能有重复成员的特性,但不同得是,有序集合中的元素是可以排序的,但是它和列表的使用索引下标作为排序依据不同的是:它给每个元素设置一个分数,作为排序的依据。
    使用场景:排行榜是有序集合经典的使用场景。例如:视频网站需要对用户上传的文件做排行榜,榜单维护可能是多方面:按照时间、按照播放量、按照获得的赞数等。
缓存雪崩是什么?缓存雪崩怎么处理?

如果缓存集中在一段时间内失效,发生大量的缓存穿透,所有的查询都落在数据库上,造成了缓存雪崩。
解决办法:

  1. 加锁排队:在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个 key 只允许一个线程查询数据和写缓存,其他线程等待;
  2. 数据预热:可以通过缓存 reload 机制,预先去更新缓存,再即将发生大并发访问前手动触发加载缓存不同的 key,设置不同的过期时间,让缓存失效的时间点尽量均匀;
  3. 做二级缓存,或者双缓存策略:Cache1 为原始缓存,Cache2 为拷贝缓存,Cache1 失效时,可以访问 Cache2,Cache1 缓存失效时间设置为短期,Cache2 设置为长期。
  4. 在缓存的时候给过期时间加上一个随机值,这样就会大幅度的减少缓存在同一时间过期。
Redis为什么查询数据这么快?
  1. 完全基于内存,绝大部分请求是纯粹的内存操作,非常快速;
  2. 数据结构简单,对数据操作也简单;
  3. 采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;
  4. 使用多路 I/O 复用模型,非阻塞 IO。
Redis为什么是单线程的?使用单线程快的原因?
  • 因为 Redis 是基于内存的操作,CPU 不是 Redis 的瓶颈,Redis 的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了,毕竟采用多线程会有很多麻烦。
  • 避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;
怎么保证缓存和数据库数据的一致性?
  1. 从理论上说,只要我们设置了合理的键的过期时间,我们就能保证缓存和数据库的数据最终是一致的。因为只要缓存数据过期了,就会被删除。随后读的时候,因为缓存里没有,就可以查数据库的数据,然后将数据库查出来的数据写入到缓存中。除了设置过期时间,我们还需要做更多的措施来尽量避免数据库与缓存处于不一致的情况发生。
  2. 新增、更改、删除数据库操作时同步更新 Redis,可以使用事物机制来保证数据的一致性。
    知道redis客户端和服务端使用的是什么协议吗
    知道redis对客户端的连接是怎么处理的吗
讲一下Redis的持久化方式

持久化就是把内存的数据写到磁盘中去,防止服务宕机了内存数据丢失。Redis 提供了两种持久化方式:RDB(默认) 和 AOF。

  • RDB 是 Redis DataBase 的缩写。按照一定的时间周期策略把内存的数据以快照的形式保存到硬盘的二进制文件。即 Snapshot 快照存储,对应产生的数据文件为 dump.rdb,通过配置文件中的 save 参数来定义快照的周期。核心函数:rdbSave(生成 RDB 文件)和 rdbLoad(从文件加载内存)两个函数。
    面试必背——Redis缓存
  • AOF 是 Append-only file 的缩写。Redis会将每一个收到的写命令都通过 Write 函数追加到文件最后,类似于 MySQL 的 binlog。当 Redis 重启是会通过重新执行文件中保存的写命令来在内存中重建整个数据库的内容。每当执行服务器(定时)任务或者函数时,flushAppendOnlyFile 函数都会被调用, 这个函数执行以下两个工作:
  1. WRITE:根据条件,将 aof_buf 中的缓存写入到 AOF 文件;
  2. SAVE:根据条件,调用 fsync 或 fdatasync 函数,将 AOF 文件保存到磁盘中。
    面试必背——Redis缓存
RDB 和 AOF 的区别:
  1. AOF 文件比 RDB 更新频率高,优先使用 AOF 还原数据;
  2. AOF比 RDB 更安全也更大;
  3. RDB 性能比 AOF 好;
  4. 如果两个都配了优先加载 AOF。
Redis 怎么实现分布式锁?

Redis 为单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对 Redis 的连接并不存在竞争关系。Redis 中可以使用 SETNX 命令实现分布式锁。一般使用 setnx(set if not exists) 指令,只允许被一个程序占有,使用完调用 del 释放锁。

Redis 淘汰策略有哪些?
  1. volatile-lru:从已设置过期时间的数据集(server. db[i]. expires)中挑选最近最少使用的数据淘汰;
  2. volatile-ttl:从已设置过期时间的数据集(server. db[i]. expires)中挑选将要过期的数据淘汰。
  3. volatile-random:从已设置过期时间的数据集(server. db[i]. expires)中任意选择数据淘汰。
  4. allkeys-lru:从数据集(server. db[i]. dict)中挑选最近最少使用的数据淘汰。
  5. allkeys-random:从数据集(server. db[i]. dict)中任意选择数据淘汰。
  6. no-enviction(驱逐):禁止驱逐数据。
什么是缓存穿透?怎么解决?

缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透。

  • 解决办法:
  1. 缓存空对象:如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。
  2. 布隆过滤器:将所有可能存在的数据哈希到一个足够大的 bitmap 中,一个一定不存在的数据会被这个 bitmap 拦截掉,从而避免了对底层存储系统的查询压力。
缓存空对象带来的问题:
  1. 空值做了缓存,意味着缓存中存了更多的键,需要更多的内存空间,比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。
  2. 缓存和存储的数据会有一段时间窗口的不一致,可能会对业务有一定影响。例如:过期时间设置为 5分钟,如果此时存储添加了这个数据,那此段时间就会出现缓存和存储数据的不一致,此时可以利用消息系统或者其他方式清除掉缓存层中的空对象。
Redis 怎么实现高并发

Redis通过主从架构,实现读写分离,主节点负责写,并将数据同步给其他从节点,从节点负责读,从而实现高并发。

redis如何做到高可用?

一个slave挂掉了不会影响程序,还会有其他的slave给程序提供查询服务
但是master死掉了就没发进行写程序了,所有redis有个主备切换,当master死掉了,会找一个slave来代替master作为新的master,这就叫做故障转移也叫做主备切换

redis原子性

一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。

redis事务

事务是一个单独的隔离操作:事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。
事务是一个原子操作:事务中的命令要么全部被执行,要么全部都不执行。

Redis并发竞争key如何来解决?

答案

一致性锁定读是什么,为什么又用Redis分布式锁代替了一致性锁定读
集群cluster的实现
Redis 的哨兵机制是什么,有哪些功能,选举算法是什么样的
Redis 主从节点是怎样通信的,传输数据是全量复制还是半增量复制