Levenberg-Marquardt算法简介和C++实现
http://blog.****.net/fightingforcv/article/details/51354985
什么是最优化,可分为几大类?
答:Levenberg-Marquardt算法是最优化算法中的一种。最优化是寻找使得函数值最小的参数向量。它的应用领域非常广泛,如:经济学、管理优化、网络分析、最优设计、机械或电子设计等等。
根据求导数的方法,可分为2大类。第一类,若f具有解析函数形式,知道x后求导数速度快。第二类,使用数值差分来求导数。
根据 使用模型不同,分为非约束最优化、约束最优化、最小二乘最优化。
什么是Levenberg-Marquardt算法?
它是使用最广泛的非线性最小二乘算法,中文为列文伯格-马夸尔特法。它是利用梯度求最大(小)值的算法,形象的说,属于“爬山”法的一种。它同时具有梯度法和牛顿法的优点。当λ很小时,步长等于牛顿法步长,当λ很大时,步长约等于梯度下降法的步长。在作者的科研项目中曾经使用过多次。图1显示了算法从起点,根据函数梯度信息,不断爬升直到最高点(最大值)的迭代过程。共进行了12步。(备注:图1中绿色线条为迭代过程)。
图1 LM算法迭代过程形象描述
图1中,算法从山脚开始不断迭代。可以看到,它的寻优速度是比较快的,在山腰部分直接利用梯度大幅度提升(参见后文例子程序中lamda较小时),快到山顶时经过几次尝试(lamda较大时),最后达到顶峰(最大值点),算法终止。
如何快速学习LM算法?
学 习该算法的主要困难是入门难。 要么国内中文教材太艰涩难懂,要么太抽象例子太少。目前,我看到的最好的英文入门教程是K. Madsen等人的《Methods for non-linear least squares problems》本来想把原文翻译一下,贴到这里。请让我偷个懒吧。能找到这里的读者,应该都是E文好手,我翻译得不清不楚,反而事倍功半了。
可在 下面的链接中找到
http://www2.imm.dtu.dk/pubdb/public/publications.php? year=&pubtype=7&pubsubtype=§ion=1&cmd=full_view&lastndays=&order=author
或者直接下载pdf原文:
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
LM算法是介于牛顿法与梯度下降法之间的一种非线性优化方法,对于过参数化问题不敏感,能有效处理冗余参数问题,使代价函数陷入局部极小值的机会大大减小,这些特性使得LM算法在计算机视觉等领域得到广泛应用。
算法流程
在LM算法中,每次迭代是寻找一个合适的阻尼因子λ,当λ很小时,算法就变成了GAuss-Newton法的最优步长计算式,λ很大时,蜕化为梯度下降法的最优步长计算式。
参考文献:
[1]. 张鸿燕, 狄征. Levenberg-Marquardt算法的一种新解释. 计算机工程与应用,2009,45(19),5-8.
from: http://heleiying.blog.163.com/blog/static/3110429201081693815164/
LM算法是介于牛顿法与梯度下降法之间的一种非线性优化方法,对于过参数化问题不敏感,能有效处理冗余参数问题,使代价 函数陷入局部极小值的机会大大减小,这些特性使得LM算法在计算机视觉等领域得到广泛应用。
算法流程
在LM算法中,每次迭代是寻找一个合适的阻尼因子λ,当λ很小时,算法就变成了GAuss-Newton法的最优步长计算式,λ很大时,蜕化为梯度下降法的最优步长计算式。
参考文献:
[1]. 张鸿燕, 狄征. Levenberg-Marquardt算法的一种新解释. 计算机工程与应用,2009,45(19),5-8.
*********************************************************************************************************************************
重点:
该算法已经比较成熟,并有专门介绍该算法的网站,并提供不同的版本进行下载。下载的网址如下(含有C++代码和Matlab代码,不过都是在Linux操作系统下运行的):
C++实现网址:http://users.ics.forth.gr/~lourakis/levmar/index.html#download
下载最新的版本levmar-2.6
开始编译:
编译之前需要安装如下库:
lapack:LAPACKLAPACK,全称是Linear Algebra PACKage,一个高性能的线性代数的程序库,主页http://www.netlib.org/lapack/
blas:BLAS,即基础线性代数子程序库,里面拥有大量已经编写好的关于线性代数运算的程序。