deeplearning.ai - 目标检测 Detection algorithms

卷积神经网络
吴恩达 Andrew Ng

目标定位 Object Localization

  • Classification with localization 分类并且确定目标位置(一个物体)
    deeplearning.ai - 目标检测 Detection algorithms
  • Detection 定位(多个物体)
  • target label y
    deeplearning.ai - 目标检测 Detection algorithms

特征点检测 Landmark Detection

  • 设置特征点坐标值作为输出
  • 所有标签在图片中保持一致 labels are consistent across different images

目标检测 Object Detection

  • Sliding windows detection 滑动窗口检测
    • 固定步幅,滑动窗口,遍历图像的每个区域
    • 裁剪后的图像输入卷积网络,对每个位置进行分类
    • 卷积网络进行单个分类的计算成本很高
  • granularity 粒度,stride 步幅

Convolutional Implementation of Sliding Windows

Bounding Box Predictions

交并比 Intersection Over Union

  • 衡量定位精确度的一种方式
  • 交集除以并集
  • a measure of the overlap between two bounding boxes

非极大值抑制 Non-max Suppression

  • output maximal probabilities classifications
  • suppress closed and non-maximal ones
  • 把其他与最大概率的边界框有高交并比的边界框抑制掉
  • deeplearning.ai - 目标检测 Detection algorithms

Anchor Boxes

  • 一个格子中检测两个物体
  • Each object in training image is assigned to grid cell that contains object’s midpoint and anchor box for the grid cell with highest IoU
  • 两个物体的中心的位于同一个格子概率很小
  • 人工选择 Anchor Box 的形状来配合需要检测的物体
  • 通过 k-means algorithm 聚类,选择合适的形状

YOLO Algorithm

Training

deeplearning.ai - 目标检测 Detection algorithms

Making predictions

deeplearning.ai - 目标检测 Detection algorithms

Output the non-max supressed outputs

deeplearning.ai - 目标检测 Detection algorithms

候选区域 Region Proposals

  • Regions with Convolutional Neural Network R-CNN
  • 选出一些格子,在其上运行卷积网络
  • segmentation algorithm 分割算法,选出色块
  • Fast R-CNNFaster R-CNN