【概率论】作业九

作业九

【概率论】作业九

151220129 计科 吴政亿

习题六 第3题

  1. S2=1n1ni=1(XiX¯¯¯)2
    =1n1ni=1[X2i+X¯¯¯22XiX¯¯¯]
    =1n1(ni=1X2i+nX¯¯¯2)2X¯¯¯1n1ni=1Xi
    =1n1(ni=1X2i+nX¯¯¯2)2nn1X¯¯¯2=1n1[ni=1X2inX¯¯¯2]
  2. E((n1)S2σ2)=n1=(n1)σ2E(S2)
    E(S2)=σ2

习题六 第8题

E(Y)=ni=1D(Xi+Xn+i2X¯¯¯)+ni=1E(Xi+Xn+i2X¯¯¯)2
=2ni=1D(Xi)4ni=1cov(Xi,X¯¯¯)4ni=1cov(Xn+i,X¯¯¯)+4ni=1D(X¯¯¯)+0
=2nσ24n[cov(Xi,Xi2n)+cov(Xn+i,Xn+i2n)]+2σ2=2(n1)σ2

习题六 第9题

(n1)S2/σ2~χ2(n1),X¯¯¯~N(μ,σ2n),Xn+1~N(μ,σ2)
Xn+1X¯¯¯~N(0,σ2n+1n)
Xn+1X¯Snn+1=nn+1Xn+1X¯(n1)S2/(n1)~N(0,n+1n)χ2(n1)/(n1)nn+1
~N(0,1)χ2(n1)/(n1)~t(n1)

习题六 第10题

  1. X¯¯¯~N(12,45),P(X¯¯¯>13)=P(X¯120.8>1.25)=1Φ(1.1180)=0.131

  2. P(min1i5Xi<10)=1P(Xi10)5=1Φ(1)5=0.5785

  3. P(max1i5Xi>15)=1P(Xi15)5=1Φ(1.5)5=0.2923

习题六 第11题

设联合样本均值为Z,方差为S2则有Z¯¯¯=n1X¯+n2Y¯n1+n2
S21=1n11n1i=1X2in1n11X¯¯¯2,    n1i=1X2i=(n11)S21+n1X¯¯¯2
S2=1n1+n21(n1i=1X2i+n2i=1Y2i)n1+n2n1+n21Z¯¯¯2
=(n11)S21+n1X¯2+(n21)S22+n2Y¯2n1+n21n1+n2n1+n21(n1X¯+n2Y¯n1+n2)2

第二题

E((X1+X2)(X1X2))=E(X21X22)=EX21EX22
=(EX1EX2)(EX1+EX2)=E(X1+X2)E(X1X2)
(X1+X2)2,(X1X2)2独立。
X1+X2~N(0,2σ2),(X1+X2)22σ2~χ(1),同理(X1X2)22σ2~χ(1)
(X1+X2)2(X1X2)2~χ(1)χ(1)~F(1,1)