对象检测与跟踪(一)(基于颜色)
基于颜色跟踪实现步骤:
(1)inRange过滤
(2)形态学操作提取
(3)轮廓查找
(4)外接矩形获取
(5)位置标定
附上代码:
//光照影响较大
//利用颜色范围过滤
//标注与测量
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
Rect roi;
void processFrame(Mat &binary, Rect &rect);
int main(int argc, char** argv) {
VideoCapture capture;
capture.open("D:picture/opencv/images/video_006.mp4");
if (!capture.isOpened()) {
printf("could not load video file...\n");
return -1;
}
Mat frame,mask;
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
Mat kernel2 = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));
namedWindow("input video", CV_WINDOW_AUTOSIZE);
namedWindow("track mask", CV_WINDOW_AUTOSIZE);
while (capture.read(frame)) {
inRange(frame, Scalar(0, 127, 0), Scalar(120, 255, 120), mask);
morphologyEx(mask, mask, MORPH_OPEN, kernel, Point(-1, -1), 1);
dilate(mask, mask, kernel2, Point(-1, -1), 4);
imshow("track mask", mask);
processFrame(mask, roi);//轮廓发现与位置标定
rectangle(frame, roi, Scalar(0, 0, 255), 3, 8, 0);
imshow("input video", frame);
char c = waitKey(100);
if (c == 27)
break;
}
capture.release();
waitKey(0);
return 0;
}
void processFrame(Mat &binary, Rect &rect) {
vector<vector<Point>> contours;
vector<Vec4i> hireachy;
findContours(binary, contours, hireachy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));
if (contours.size() > 0) {
double maxArea = 0.0;
for (size_t t = 0; t < contours.size(); t++) {
double area = contourArea(contours[static_cast<int>(t)]);
if (area > maxArea) {
maxArea = area;
rect = boundingRect(contours[static_cast<int>(t)]);
}
}
}
else {
rect.x = rect.y = rect.width = rect.height=0;
}
}
这是随机截取的一帧,作为参考。